Cargando…
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
Reinforcement learning is a paradigm that can account for how organisms learn to adapt their behavior in complex environments with sparse rewards. To partition an environment into discrete states, implementations in spiking neuronal networks typically rely on input architectures involving place cell...
Autores principales: | Weidel, Philipp, Duarte, Renato, Morrison, Abigail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970044/ https://www.ncbi.nlm.nih.gov/pubmed/33746728 http://dx.doi.org/10.3389/fncom.2021.543872 |
Ejemplares similares
-
Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS
por: Weidel, Philipp, et al.
Publicado: (2016) -
A Closed-Loop Toolchain for Neural Network Simulations of Learning Autonomous Agents
por: Jordan, Jakob, et al.
Publicado: (2019) -
ROS-MUSIC toolchain for spiking neural network simulations in a robotic environment
por: Weidel, Philipp, et al.
Publicado: (2015) -
Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models
por: Pauli, Robin, et al.
Publicado: (2018) -
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
por: Guo, Yilong, et al.
Publicado: (2019)