Cargando…
In Situ TEM of Electrochemical Incidents: Effects of Biasing and Electron Beam on Electrochemistry
[Image: see text] In situ TEM utilizing specialized holders and MEMS chips allows the investigation of the interaction, evolution, property, and function of nanostructures and devices responding to designed environments and/or stimuli. This mini-review summarizes the recent progress of in situ TEM w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970484/ https://www.ncbi.nlm.nih.gov/pubmed/33748565 http://dx.doi.org/10.1021/acsomega.0c05829 |
Sumario: | [Image: see text] In situ TEM utilizing specialized holders and MEMS chips allows the investigation of the interaction, evolution, property, and function of nanostructures and devices responding to designed environments and/or stimuli. This mini-review summarizes the recent progress of in situ TEM with a liquid cell and a flow channel for the investigation of interactions among aqueous nanoparticles, electrolytes, and electrodes under the influence of electric bias and electron beam. A focus is made on nanoparticle growth by electrodeposition, particle nucleation induced by electric biasing or electron beam, self-assembly, and electrolyte breakdown. We also outline some future opportunities of in situ TEM with aqueous cells and flow. |
---|