Cargando…

A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development

During early mammalian embryo development, a small number of cells make robust fate decisions at particular spatial locations in a tight time window to form inner cell mass (ICM), and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcriptomics data allows scrutinizatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Cang, Zixuan, Wang, Yangyang, Wang, Qixuan, Cho, Ken W. Y., Holmes, William, Nie, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971879/
https://www.ncbi.nlm.nih.gov/pubmed/33684098
http://dx.doi.org/10.1371/journal.pcbi.1008571
_version_ 1783666661243486208
author Cang, Zixuan
Wang, Yangyang
Wang, Qixuan
Cho, Ken W. Y.
Holmes, William
Nie, Qing
author_facet Cang, Zixuan
Wang, Yangyang
Wang, Qixuan
Cho, Ken W. Y.
Holmes, William
Nie, Qing
author_sort Cang, Zixuan
collection PubMed
description During early mammalian embryo development, a small number of cells make robust fate decisions at particular spatial locations in a tight time window to form inner cell mass (ICM), and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcriptomics data allows scrutinization of heterogeneity of individual cells, consistent spatial and temporal mechanisms the early embryo utilize to robustly form the Epi/PE layers from ICM remain elusive. Here we build a multiscale three-dimensional model for mammalian embryo to recapitulate the observed patterning process from zygote to late blastocyst. By integrating the spatiotemporal information reconstructed from multiple single-cell transcriptomic datasets, the data-informed modeling analysis suggests two major processes critical to the formation of Epi/PE layers: a selective cell-cell adhesion mechanism (via EphA4/EphrinB2) for fate-location coordination and a temporal attenuation mechanism of cell signaling (via Fgf). Spatial imaging data and distinct subsets of single-cell gene expression data are then used to validate the predictions. Together, our study provides a multiscale framework that incorporates single-cell gene expression datasets to analyze gene regulations, cell-cell communications, and physical interactions among cells in complex geometries at single-cell resolution, with direct application to late-stage development of embryogenesis.
format Online
Article
Text
id pubmed-7971879
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79718792021-03-31 A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development Cang, Zixuan Wang, Yangyang Wang, Qixuan Cho, Ken W. Y. Holmes, William Nie, Qing PLoS Comput Biol Research Article During early mammalian embryo development, a small number of cells make robust fate decisions at particular spatial locations in a tight time window to form inner cell mass (ICM), and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcriptomics data allows scrutinization of heterogeneity of individual cells, consistent spatial and temporal mechanisms the early embryo utilize to robustly form the Epi/PE layers from ICM remain elusive. Here we build a multiscale three-dimensional model for mammalian embryo to recapitulate the observed patterning process from zygote to late blastocyst. By integrating the spatiotemporal information reconstructed from multiple single-cell transcriptomic datasets, the data-informed modeling analysis suggests two major processes critical to the formation of Epi/PE layers: a selective cell-cell adhesion mechanism (via EphA4/EphrinB2) for fate-location coordination and a temporal attenuation mechanism of cell signaling (via Fgf). Spatial imaging data and distinct subsets of single-cell gene expression data are then used to validate the predictions. Together, our study provides a multiscale framework that incorporates single-cell gene expression datasets to analyze gene regulations, cell-cell communications, and physical interactions among cells in complex geometries at single-cell resolution, with direct application to late-stage development of embryogenesis. Public Library of Science 2021-03-08 /pmc/articles/PMC7971879/ /pubmed/33684098 http://dx.doi.org/10.1371/journal.pcbi.1008571 Text en © 2021 Cang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Cang, Zixuan
Wang, Yangyang
Wang, Qixuan
Cho, Ken W. Y.
Holmes, William
Nie, Qing
A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title_full A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title_fullStr A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title_full_unstemmed A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title_short A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
title_sort multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971879/
https://www.ncbi.nlm.nih.gov/pubmed/33684098
http://dx.doi.org/10.1371/journal.pcbi.1008571
work_keys_str_mv AT cangzixuan amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT wangyangyang amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT wangqixuan amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT chokenwy amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT holmeswilliam amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT nieqing amultiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT cangzixuan multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT wangyangyang multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT wangqixuan multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT chokenwy multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT holmeswilliam multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment
AT nieqing multiscalemodelviasinglecelltranscriptomicsrevealsrobustpatterningmechanismsduringearlymammalianembryodevelopment