Cargando…

MicroRNA-181a suppresses norethisterone-promoted tumorigenesis of breast epithelial MCF10A cells through the PGRMC1/EGFR–PI3K/Akt/mTOR signaling pathway

BACKGROUND: Research suggests that hormone replacement therapy may increase the risk of breast cancer, and progestins such as norethisterone (NET) play a key role in this phenomenon. We have demonstrated that microRNA-181a (miR-181a) suppresses NET-promoted breast cancer cell survival. Nonetheless,...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Guiju, Wang, Yuejiao, Houda, Tahiri, Yang, Chun, Wang, Lijuan, Gu, Muqing, Mueck, Alfred, Croteau, Stephane, Ruan, Xiangyan, Hardy, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7974027/
https://www.ncbi.nlm.nih.gov/pubmed/33730679
http://dx.doi.org/10.1016/j.tranon.2021.101068
Descripción
Sumario:BACKGROUND: Research suggests that hormone replacement therapy may increase the risk of breast cancer, and progestins such as norethisterone (NET) play a key role in this phenomenon. We have demonstrated that microRNA-181a (miR-181a) suppresses NET-promoted breast cancer cell survival. Nonetheless, the effects of NET and miR-181a on the tumorigenesis of human breast epithelial cells have not yet been elaborated. METHODS: Assays of cell viability, proliferation, migration, apoptosis, and colony formation were performed to investigate the pro-tumorigenesis effect of NET and the effects of miR-181a on human breast epithelial MCF10A cells. The expressions of cell-proliferation-related genes and apoptotic factors were analyzed by quantitative RT-PCR and Western blot in MCF10A cells treated with NET and miR-181a. RESULTS: NET significantly increased MCF10A cell viability, proliferation, migration, and colony formation, but reduced cellular apoptosis. In addition, NET increased the expression of progesterone receptor membrane component 1 (PGRMC1), EGFR, B-cell lymphoma 2, cyclin D1, and proliferating cell nuclear antigen, but decreased the expression of pro-apoptosis factors, such as Bax, caspase-7, and caspase-9. Overexpression of miR-181a strongly inhibited the effects of NET on MCF10A cells and abrogated NET-stimulated PGRMC1, EGFR, and mTOR expression. CONCLUSIONS: Activation of the PGRMC1/EGFR–PI3K/Akt/mTOR signaling pathway is the primary mechanism underlying the pro-tumorigenesis effects of NET on human breast epithelial MCF10A cells. Additionally, miR-181a can suppress the effects of NET on these cells. These data suggest a therapeutic potential for miR-181a in reducing or preventing the risk of breast cancer in hormone replacement therapy using NET.