Cargando…
Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation
Recent studies have proven that the overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also duct cells, however, pancreatic duct contribution in acinar cells homeostasis is poorly known and the molecular mechanisms leading to acinar insult and acute pancreatiti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977474/ https://www.ncbi.nlm.nih.gov/pubmed/33754072 http://dx.doi.org/10.7150/thno.54245 |
_version_ | 1783667121281040384 |
---|---|
author | Xiang, Hong Guo, Fangyue Tao, Xufeng Zhou, Qi Xia, Shilin Deng, Dawei Li, Lunxu Shang, Dong |
author_facet | Xiang, Hong Guo, Fangyue Tao, Xufeng Zhou, Qi Xia, Shilin Deng, Dawei Li, Lunxu Shang, Dong |
author_sort | Xiang, Hong |
collection | PubMed |
description | Recent studies have proven that the overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also duct cells, however, pancreatic duct contribution in acinar cells homeostasis is poorly known and the molecular mechanisms leading to acinar insult and acute pancreatitis (AP) are unclear. Our previous work also showed that S100A9 protein level was notably increased in AP rat pancreas through iTRAQ-based quantitative proteomic analysis. Therefore, we investigated the actions of injured duct cells on acinar cells and the S100A9-related effects and mechanisms underlying AP pathology in the present paper. Methods: In this study, we constructed S100A9 knockout (s100a9(-/-)) mice and an in vitro coculture system for pancreatic duct cells and acinar cells. Moreover, a variety of small molecular inhibitors of S100A9 were screened from ChemDiv through molecular docking and virtual screening methods. Results: We found that the upregulation of S100A9 induces cell injury and inflammatory response via NLRP3 activation by targeting VNN1-mediated ROS release; and loss of S100A9 decreases AP injury in vitro and in vivo. Moreover, molecular docking and mutant plasmid experiments proved that S100A9 has a direct interaction with VNN1 through the salt bridges formation of Lys57 and Glu92 residues in S100A9 protein. We further found that compounds C(42)H(60)N(4)O(6) and C(28)H(29)F(3)N(4)O(5)S can significantly improve AP injury in vitro and in vivo through inhibiting S100A9-VNN1 interaction. Conclusions: Our study showed the important regulatory effect of S100A9 on pancreatic duct injury during AP and revealed that inhibition of the S100A9-VNN1 interaction may be a key therapeutic target for this disease. |
format | Online Article Text |
id | pubmed-7977474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-79774742021-03-21 Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation Xiang, Hong Guo, Fangyue Tao, Xufeng Zhou, Qi Xia, Shilin Deng, Dawei Li, Lunxu Shang, Dong Theranostics Research Paper Recent studies have proven that the overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also duct cells, however, pancreatic duct contribution in acinar cells homeostasis is poorly known and the molecular mechanisms leading to acinar insult and acute pancreatitis (AP) are unclear. Our previous work also showed that S100A9 protein level was notably increased in AP rat pancreas through iTRAQ-based quantitative proteomic analysis. Therefore, we investigated the actions of injured duct cells on acinar cells and the S100A9-related effects and mechanisms underlying AP pathology in the present paper. Methods: In this study, we constructed S100A9 knockout (s100a9(-/-)) mice and an in vitro coculture system for pancreatic duct cells and acinar cells. Moreover, a variety of small molecular inhibitors of S100A9 were screened from ChemDiv through molecular docking and virtual screening methods. Results: We found that the upregulation of S100A9 induces cell injury and inflammatory response via NLRP3 activation by targeting VNN1-mediated ROS release; and loss of S100A9 decreases AP injury in vitro and in vivo. Moreover, molecular docking and mutant plasmid experiments proved that S100A9 has a direct interaction with VNN1 through the salt bridges formation of Lys57 and Glu92 residues in S100A9 protein. We further found that compounds C(42)H(60)N(4)O(6) and C(28)H(29)F(3)N(4)O(5)S can significantly improve AP injury in vitro and in vivo through inhibiting S100A9-VNN1 interaction. Conclusions: Our study showed the important regulatory effect of S100A9 on pancreatic duct injury during AP and revealed that inhibition of the S100A9-VNN1 interaction may be a key therapeutic target for this disease. Ivyspring International Publisher 2021-03-04 /pmc/articles/PMC7977474/ /pubmed/33754072 http://dx.doi.org/10.7150/thno.54245 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Xiang, Hong Guo, Fangyue Tao, Xufeng Zhou, Qi Xia, Shilin Deng, Dawei Li, Lunxu Shang, Dong Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title | Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title_full | Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title_fullStr | Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title_full_unstemmed | Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title_short | Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation |
title_sort | pancreatic ductal deletion of s100a9 alleviates acute pancreatitis by targeting vnn1-mediated ros release to inhibit nlrp3 activation |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977474/ https://www.ncbi.nlm.nih.gov/pubmed/33754072 http://dx.doi.org/10.7150/thno.54245 |
work_keys_str_mv | AT xianghong pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT guofangyue pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT taoxufeng pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT zhouqi pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT xiashilin pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT dengdawei pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT lilunxu pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation AT shangdong pancreaticductaldeletionofs100a9alleviatesacutepancreatitisbytargetingvnn1mediatedrosreleasetoinhibitnlrp3activation |