Cargando…
Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures()
In many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985674/ https://www.ncbi.nlm.nih.gov/pubmed/34083846 http://dx.doi.org/10.1016/j.csda.2021.107187 |
_version_ | 1783668296604712960 |
---|---|
author | Kasianova, Ksenia Kelbert, Mark Mozgunov, Pavel |
author_facet | Kasianova, Ksenia Kelbert, Mark Mozgunov, Pavel |
author_sort | Kasianova, Ksenia |
collection | PubMed |
description | In many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them are needed. Recently, it was argued that response-adaptive designs such as families of multi-arm bandit (MAB) methods could provide the means for achieving this balance. Furthermore, response-adaptive designs based on a concept of context-dependent (weighted) information criteria were recently proposed with a focus on Shannon’s differential entropy. The information-theoretic designs based on the weighted Renyi, Tsallis and Fisher informations are also proposed. Due to built-in parameters of these novel designs, the balance between the statistical power and the number of patients that respond to the treatment can be tuned explicitly. The asymptotic properties of these measures are studied in order to construct intuitive criteria for arm selection. A comprehensive simulation study shows that using the exact criteria over asymptotic ones or using information measures with more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms of the power or proportion of patients allocated to superior treatments. The proposed designs based on information-theoretical criteria are compared to several alternative approaches. For example, via tuning of the built-in parameter, one can find designs with power comparable to the fixed equal randomisation’s but a greater number of patients responded in the trials. |
format | Online Article Text |
id | pubmed-7985674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier B.V |
record_format | MEDLINE/PubMed |
spelling | pubmed-79856742021-06-01 Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() Kasianova, Ksenia Kelbert, Mark Mozgunov, Pavel Comput Stat Data Anal Article In many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them are needed. Recently, it was argued that response-adaptive designs such as families of multi-arm bandit (MAB) methods could provide the means for achieving this balance. Furthermore, response-adaptive designs based on a concept of context-dependent (weighted) information criteria were recently proposed with a focus on Shannon’s differential entropy. The information-theoretic designs based on the weighted Renyi, Tsallis and Fisher informations are also proposed. Due to built-in parameters of these novel designs, the balance between the statistical power and the number of patients that respond to the treatment can be tuned explicitly. The asymptotic properties of these measures are studied in order to construct intuitive criteria for arm selection. A comprehensive simulation study shows that using the exact criteria over asymptotic ones or using information measures with more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms of the power or proportion of patients allocated to superior treatments. The proposed designs based on information-theoretical criteria are compared to several alternative approaches. For example, via tuning of the built-in parameter, one can find designs with power comparable to the fixed equal randomisation’s but a greater number of patients responded in the trials. Elsevier B.V 2021-06 /pmc/articles/PMC7985674/ /pubmed/34083846 http://dx.doi.org/10.1016/j.csda.2021.107187 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasianova, Ksenia Kelbert, Mark Mozgunov, Pavel Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title | Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title_full | Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title_fullStr | Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title_full_unstemmed | Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title_short | Response adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures() |
title_sort | response adaptive designs for phase ii trials with binary endpoint based on context-dependent information measures() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985674/ https://www.ncbi.nlm.nih.gov/pubmed/34083846 http://dx.doi.org/10.1016/j.csda.2021.107187 |
work_keys_str_mv | AT kasianovaksenia responseadaptivedesignsforphaseiitrialswithbinaryendpointbasedoncontextdependentinformationmeasures AT kelbertmark responseadaptivedesignsforphaseiitrialswithbinaryendpointbasedoncontextdependentinformationmeasures AT mozgunovpavel responseadaptivedesignsforphaseiitrialswithbinaryendpointbasedoncontextdependentinformationmeasures |