Cargando…

Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion

Herein, we disclose the facile reduction of pyridine (and its derivatives) by linear 3d‐metal(I) silylamides (M=Cr–Co). This reaction resulted in intermolecular C−C coupling to give dinuclear metal(II) complexes bearing a bridging 4,4′‐dihydrobipyridyl ligand. For iron, we demonstrated that the C−C...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Igor, Werncke, Christian Gunnar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986091/
https://www.ncbi.nlm.nih.gov/pubmed/33453071
http://dx.doi.org/10.1002/chem.202004852
_version_ 1783668373189558272
author Müller, Igor
Werncke, Christian Gunnar
author_facet Müller, Igor
Werncke, Christian Gunnar
author_sort Müller, Igor
collection PubMed
description Herein, we disclose the facile reduction of pyridine (and its derivatives) by linear 3d‐metal(I) silylamides (M=Cr–Co). This reaction resulted in intermolecular C−C coupling to give dinuclear metal(II) complexes bearing a bridging 4,4′‐dihydrobipyridyl ligand. For iron, we demonstrated that the C−C coupling is reversible in solution, either directly or by reaction with substrates, via a presumed monomeric metal(II) complex bearing a pyridyl radical anion. In the course of this investigation, we also observed that the dinuclear metal(II) complex incorporating iron facilitated the isomerisation of 1,4‐cyclohexadiene to 1,3‐cyclohexadiene as well as equimolar amounts of benzene and cyclohexene. Furthermore, we synthesised and structurally characterised a non‐3d‐metal‐bound pyridyl radical anion. The reactions of the silylamides with perfluoropyridine led to C−F bond cleavage with the formation of metal(II) fluoride complexes of manganese, iron and cobalt along with the homocoupling or reductive degradation of the substrate. In the case of cobalt, the use of lesser fluorinated pyridines led to C−F bond cleavage but no homocoupling. Overall, in this paper we provide insights into the multifaceted behaviour of simple (fluoro)pyridines in the presence of moderately to highly reducing metal complexes.
format Online
Article
Text
id pubmed-7986091
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79860912021-03-25 Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion Müller, Igor Werncke, Christian Gunnar Chemistry Full Papers Herein, we disclose the facile reduction of pyridine (and its derivatives) by linear 3d‐metal(I) silylamides (M=Cr–Co). This reaction resulted in intermolecular C−C coupling to give dinuclear metal(II) complexes bearing a bridging 4,4′‐dihydrobipyridyl ligand. For iron, we demonstrated that the C−C coupling is reversible in solution, either directly or by reaction with substrates, via a presumed monomeric metal(II) complex bearing a pyridyl radical anion. In the course of this investigation, we also observed that the dinuclear metal(II) complex incorporating iron facilitated the isomerisation of 1,4‐cyclohexadiene to 1,3‐cyclohexadiene as well as equimolar amounts of benzene and cyclohexene. Furthermore, we synthesised and structurally characterised a non‐3d‐metal‐bound pyridyl radical anion. The reactions of the silylamides with perfluoropyridine led to C−F bond cleavage with the formation of metal(II) fluoride complexes of manganese, iron and cobalt along with the homocoupling or reductive degradation of the substrate. In the case of cobalt, the use of lesser fluorinated pyridines led to C−F bond cleavage but no homocoupling. Overall, in this paper we provide insights into the multifaceted behaviour of simple (fluoro)pyridines in the presence of moderately to highly reducing metal complexes. John Wiley and Sons Inc. 2021-02-16 2021-03-12 /pmc/articles/PMC7986091/ /pubmed/33453071 http://dx.doi.org/10.1002/chem.202004852 Text en © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Full Papers
Müller, Igor
Werncke, Christian Gunnar
Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title_full Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title_fullStr Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title_full_unstemmed Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title_short Reductive Coupling of (Fluoro)pyridines by Linear 3d‐Metal(I) Silylamides of Cr–Co: A Tale of C−C Bond Formation, C−F Bond Cleavage and a Pyridyl Radical Anion
title_sort reductive coupling of (fluoro)pyridines by linear 3d‐metal(i) silylamides of cr–co: a tale of c−c bond formation, c−f bond cleavage and a pyridyl radical anion
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986091/
https://www.ncbi.nlm.nih.gov/pubmed/33453071
http://dx.doi.org/10.1002/chem.202004852
work_keys_str_mv AT mullerigor reductivecouplingoffluoropyridinesbylinear3dmetalisilylamidesofcrcoataleofccbondformationcfbondcleavageandapyridylradicalanion
AT wernckechristiangunnar reductivecouplingoffluoropyridinesbylinear3dmetalisilylamidesofcrcoataleofccbondformationcfbondcleavageandapyridylradicalanion