Cargando…

LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation

Glutamine constitutes an essential source of both carbon and nitrogen for numerous biosynthetic processes. The first and rate-limiting step of glutaminolysis involves the generation of glutamate from glutamine, catalyzed by glutaminase-1 (GLS1). Shortages of glutamine result in reductions in GLS1, b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruijie, Cao, Leixi, Thorne, Rick Francis, Zhang, Xu Dong, Li, Jinming, Shao, Fengmin, Zhang, Lirong, Wu, Mian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990344/
https://www.ncbi.nlm.nih.gov/pubmed/33762340
http://dx.doi.org/10.1126/sciadv.abe5708
Descripción
Sumario:Glutamine constitutes an essential source of both carbon and nitrogen for numerous biosynthetic processes. The first and rate-limiting step of glutaminolysis involves the generation of glutamate from glutamine, catalyzed by glutaminase-1 (GLS1). Shortages of glutamine result in reductions in GLS1, but the underlying mechanisms are not fully known. Here, we characterize a long noncoding RNA, GIRGL (glutamine insufficiency regulator of glutaminase lncRNA), that is induced upon glutamine starvation. Manipulating GIRGL revealed a relationship between its expression and the translational suppression of GLS1. Cellular GIRGL levels are balanced by a combination of transactivation by c-JUN together with negative stability regulation via HuR/Ago2. Increased levels of GIRGL in the absence of glutamine drive formation of a complex between dimers of CAPRIN1 and GLS1 mRNA, serving to promote liquid-liquid phase separation of CAPRIN1 and inducing stress granule formation. Suppressing GLS1 mRNA translation enables cancer cells to survive under prolonged glutamine deprivation stress.