Cargando…
Effect of Lactobacillus fermentum MCC2760-Based Probiotic Curd on Hypercholesterolemic C57BL6 Mice
[Image: see text] Lactobacillus fermentum MCC2760 is a probiotic strain proven earlier for cholesterol-reducing and anti-inflammatory properties in vitro and in vivo. This study investigates L. fermentum MCC2760-based probiotic curd in high-cholesterol diet (HCD)-fed C57BL6 mice. The mice were group...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992159/ https://www.ncbi.nlm.nih.gov/pubmed/33778280 http://dx.doi.org/10.1021/acsomega.1c00045 |
Sumario: | [Image: see text] Lactobacillus fermentum MCC2760 is a probiotic strain proven earlier for cholesterol-reducing and anti-inflammatory properties in vitro and in vivo. This study investigates L. fermentum MCC2760-based probiotic curd in high-cholesterol diet (HCD)-fed C57BL6 mice. The mice were grouped into normal diet control, high-cholesterol diet control, normal diet with probiotic supplementation, and high-cholesterol diet with probiotic supplementation. Control groups and treatment groups were supplemented with market curd and probiotic curd, respectively, via oral gavage for eight weeks. The probiotic count was maintained at 10.95 log CFU/mL in the developed probiotic curd. The HCD group showed an increase in feed intake and body weight. Reduction in the levels of serum cholesterol, triglycerides, low-density lipoprotein cholesterol, glucose, aspartate aminotransferase, and alanine transaminase was observed in probiotic-supplemented groups. The probiotic-supplemented group resulted in an increase in Lactobacillus spp. count along with reduced pathogen count in the feces. Probiotic supplementation also showed a reduction in the bacterial translocation count in mesenteric adipose tissue. Expression of inflammatory markers by qPCR showed the decline in the fold change of TNF-α, IL-6, and IL-12 and elevation in the fold change of IL-10 in the adipose tissue of the probiotic-treated group. Probiotic supplementation also improved the expression of GLP-1, ZO-1, and CB2 in the intestine. They were thus possibly playing a role in the enhancement of barrier function. Histopathological sections showed improvement in the cellular infiltration and pathological indications due to the high-cholesterol diet intake. Our study also confirmed that probiotics could increase serum antioxidant enzymes in treated groups, showing their beneficial antioxidant activity. It suggests the anti-inflammatory, antioxidant effect, and gut barrier function of the given probiotic formulation, which ameliorate hypercholesterolemia. |
---|