Cargando…
Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and lo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993277/ https://www.ncbi.nlm.nih.gov/pubmed/33326705 http://dx.doi.org/10.1111/cts.12934 |
_version_ | 1783669531962507264 |
---|---|
author | Andrews, Kayla Ann Owen, Joel S. McCarthy, James Wesche, David Gobeau, Nathalie Grasela, Thaddeus H. Möhrle, Jörg J. |
author_facet | Andrews, Kayla Ann Owen, Joel S. McCarthy, James Wesche, David Gobeau, Nathalie Grasela, Thaddeus H. Möhrle, Jörg J. |
author_sort | Andrews, Kayla Ann |
collection | PubMed |
description | Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies. |
format | Online Article Text |
id | pubmed-7993277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79932772021-03-29 Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development Andrews, Kayla Ann Owen, Joel S. McCarthy, James Wesche, David Gobeau, Nathalie Grasela, Thaddeus H. Möhrle, Jörg J. Clin Transl Sci Research Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies. John Wiley and Sons Inc. 2020-12-16 2021-03 /pmc/articles/PMC7993277/ /pubmed/33326705 http://dx.doi.org/10.1111/cts.12934 Text en © 2020 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Andrews, Kayla Ann Owen, Joel S. McCarthy, James Wesche, David Gobeau, Nathalie Grasela, Thaddeus H. Möhrle, Jörg J. Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title | Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title_full | Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title_fullStr | Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title_full_unstemmed | Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title_short | Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency of the Design of Volunteer Infection Studies for Antimalarial Drug Development |
title_sort | retrospective analysis using pharmacokinetic/pharmacodynamic modeling and simulation offers improvements in efficiency of the design of volunteer infection studies for antimalarial drug development |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993277/ https://www.ncbi.nlm.nih.gov/pubmed/33326705 http://dx.doi.org/10.1111/cts.12934 |
work_keys_str_mv | AT andrewskaylaann retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT owenjoels retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT mccarthyjames retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT weschedavid retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT gobeaunathalie retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT graselathaddeush retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment AT mohrlejorgj retrospectiveanalysisusingpharmacokineticpharmacodynamicmodelingandsimulationoffersimprovementsinefficiencyofthedesignofvolunteerinfectionstudiesforantimalarialdrugdevelopment |