Cargando…
Spatial mapping of single cells in the Drosophila embryo from transcriptomic data based on topological consistency
The advancement in single-cell RNA sequencing technologies allow us to obtain transcriptome at single cell resolution. However, the original spatial context of cells, a crucial knowledge for understanding cellular and tissue-level functions, is often lost during sequencing. To address this issue, th...
Autores principales: | Zand, Maryam, Ruan, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993407/ https://www.ncbi.nlm.nih.gov/pubmed/33824719 http://dx.doi.org/10.12688/f1000research.24163.2 |
Ejemplares similares
-
spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
por: Bae, Sungwoo, et al.
Publicado: (2023) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
por: Miller, Brendan F., et al.
Publicado: (2021) -
Network-Based Single-Cell RNA-Seq Data Imputation Enhances Cell Type Identification
por: Zand, Maryam, et al.
Publicado: (2020) -
De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
por: Li, Runze, et al.
Publicado: (2022)