Cargando…
A new algorithm to train hidden Markov models for biological sequences with partial labels
BACKGROUND: Hidden Markov models (HMM) are a powerful tool for analyzing biological sequences in a wide variety of applications, from profiling functional protein families to identifying functional domains. The standard method used for HMM training is either by maximum likelihood using counting when...
Autores principales: | Li, Jiefu, Lee, Jung-Youn, Liao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995745/ https://www.ncbi.nlm.nih.gov/pubmed/33771095 http://dx.doi.org/10.1186/s12859-021-04080-0 |
Ejemplares similares
-
Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory
por: Churbanov, Alexander, et al.
Publicado: (2008) -
Error statistics of hidden Markov model and hidden Boltzmann model results
por: Newberg, Lee A
Publicado: (2009) -
Flexible hidden Markov models for behaviour-dependent habitat selection
por: Klappstein, N. J., et al.
Publicado: (2023) -
New decoding algorithms for Hidden Markov Models using distance measures on labellings
por: Brown, Daniel G, et al.
Publicado: (2010) -
Riboswitch Detection Using Profile Hidden Markov Models
por: Singh, Payal, et al.
Publicado: (2009)