Cargando…
Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4
The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a pla...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996497/ https://www.ncbi.nlm.nih.gov/pubmed/33668972 http://dx.doi.org/10.3390/v13030363 |
_version_ | 1783670115808575488 |
---|---|
author | Falkenhagen, Alexander Huyzers, Marno van Dijk, Alberdina A. Johne, Reimar |
author_facet | Falkenhagen, Alexander Huyzers, Marno van Dijk, Alberdina A. Johne, Reimar |
author_sort | Falkenhagen, Alexander |
collection | PubMed |
description | The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a plasmid-based reverse genetics system based on simian RVA strain SA11, we previously showed that the rescue of viable reassortants containing a heterologous VP4-encoding genome segment was strain-dependent. In order to unravel the reasons for the reassortment restrictions, we designed here a series of plasmids encoding chimeric VP4s. Exchange of the VP4 domains interacting with VP6 and VP7 was not sufficient for rescue of viable viruses. In contrast, the exchange of fragments encoding the receptor-binding region of VP4 resulted in virus rescue. All parent strains and the rescued reassortants replicated efficiently in MA-104 cells used for virus propagation. In contrast, replication in BSR T7/5 cells used for plasmid transfection was only efficient for the SA11 strain, whereas the rescued reassortants replicated slowly, and the parent strains failing to produce reassortants did not replicate. While future research in this area is necessary, replication in BSR T7/5 cells may be one factor that affects the rescue of RVAs. |
format | Online Article Text |
id | pubmed-7996497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79964972021-03-27 Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 Falkenhagen, Alexander Huyzers, Marno van Dijk, Alberdina A. Johne, Reimar Viruses Article The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a plasmid-based reverse genetics system based on simian RVA strain SA11, we previously showed that the rescue of viable reassortants containing a heterologous VP4-encoding genome segment was strain-dependent. In order to unravel the reasons for the reassortment restrictions, we designed here a series of plasmids encoding chimeric VP4s. Exchange of the VP4 domains interacting with VP6 and VP7 was not sufficient for rescue of viable viruses. In contrast, the exchange of fragments encoding the receptor-binding region of VP4 resulted in virus rescue. All parent strains and the rescued reassortants replicated efficiently in MA-104 cells used for virus propagation. In contrast, replication in BSR T7/5 cells used for plasmid transfection was only efficient for the SA11 strain, whereas the rescued reassortants replicated slowly, and the parent strains failing to produce reassortants did not replicate. While future research in this area is necessary, replication in BSR T7/5 cells may be one factor that affects the rescue of RVAs. MDPI 2021-02-25 /pmc/articles/PMC7996497/ /pubmed/33668972 http://dx.doi.org/10.3390/v13030363 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Falkenhagen, Alexander Huyzers, Marno van Dijk, Alberdina A. Johne, Reimar Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title | Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title_full | Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title_fullStr | Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title_full_unstemmed | Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title_short | Rescue of Infectious Rotavirus Reassortants by a Reverse Genetics System Is Restricted by the Receptor-Binding Region of VP4 |
title_sort | rescue of infectious rotavirus reassortants by a reverse genetics system is restricted by the receptor-binding region of vp4 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996497/ https://www.ncbi.nlm.nih.gov/pubmed/33668972 http://dx.doi.org/10.3390/v13030363 |
work_keys_str_mv | AT falkenhagenalexander rescueofinfectiousrotavirusreassortantsbyareversegeneticssystemisrestrictedbythereceptorbindingregionofvp4 AT huyzersmarno rescueofinfectiousrotavirusreassortantsbyareversegeneticssystemisrestrictedbythereceptorbindingregionofvp4 AT vandijkalberdinaa rescueofinfectiousrotavirusreassortantsbyareversegeneticssystemisrestrictedbythereceptorbindingregionofvp4 AT johnereimar rescueofinfectiousrotavirusreassortantsbyareversegeneticssystemisrestrictedbythereceptorbindingregionofvp4 |