Cargando…

CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids

Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakaria, Mahmoud M., Schemmerling, Brigitte, Ober, Dietrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998174/
https://www.ncbi.nlm.nih.gov/pubmed/33801907
http://dx.doi.org/10.3390/molecules26061498
_version_ 1783670490980679680
author Zakaria, Mahmoud M.
Schemmerling, Brigitte
Ober, Dietrich
author_facet Zakaria, Mahmoud M.
Schemmerling, Brigitte
Ober, Dietrich
author_sort Zakaria, Mahmoud M.
collection PubMed
description Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss gene encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis. The resulting hairy root (HR) lines were analyzed for the type of gene-editing effect that they exhibited and for their homospermidine and PA content. Inactivation of only one of the two hss alleles resulted in HRs with significantly reduced levels of homospermidine and PAs, whereas no alkaloids were detectable in HRs with two inactivated hss alleles. PAs were detectable once again after the HSS-deficient HRs were fed homospermidine confirming that the inability of these roots to produce PAs was only attributable to the inactivated HSS and not to any unidentified off-target effect of the CRISPR/Cas9 approach. Further analyses showed that PA-free HRs possessed, at least in traces, detectable amounts of homospermidine, and that the PA patterns of manipulated HRs were different from those of control lines. These observations are discussed with regard to the potential use of such a CRISPR/Cas9-mediated approach for the economical exploitation of in vitro systems in a medicinal plant and for further studies of PA biosynthesis in non-model plants.
format Online
Article
Text
id pubmed-7998174
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79981742021-03-28 CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids Zakaria, Mahmoud M. Schemmerling, Brigitte Ober, Dietrich Molecules Article Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss gene encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis. The resulting hairy root (HR) lines were analyzed for the type of gene-editing effect that they exhibited and for their homospermidine and PA content. Inactivation of only one of the two hss alleles resulted in HRs with significantly reduced levels of homospermidine and PAs, whereas no alkaloids were detectable in HRs with two inactivated hss alleles. PAs were detectable once again after the HSS-deficient HRs were fed homospermidine confirming that the inability of these roots to produce PAs was only attributable to the inactivated HSS and not to any unidentified off-target effect of the CRISPR/Cas9 approach. Further analyses showed that PA-free HRs possessed, at least in traces, detectable amounts of homospermidine, and that the PA patterns of manipulated HRs were different from those of control lines. These observations are discussed with regard to the potential use of such a CRISPR/Cas9-mediated approach for the economical exploitation of in vitro systems in a medicinal plant and for further studies of PA biosynthesis in non-model plants. MDPI 2021-03-10 /pmc/articles/PMC7998174/ /pubmed/33801907 http://dx.doi.org/10.3390/molecules26061498 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zakaria, Mahmoud M.
Schemmerling, Brigitte
Ober, Dietrich
CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title_full CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title_fullStr CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title_full_unstemmed CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title_short CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids
title_sort crispr/cas9-mediated genome editing in comfrey (symphytum officinale) hairy roots results in the complete eradication of pyrrolizidine alkaloids
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998174/
https://www.ncbi.nlm.nih.gov/pubmed/33801907
http://dx.doi.org/10.3390/molecules26061498
work_keys_str_mv AT zakariamahmoudm crisprcas9mediatedgenomeeditingincomfreysymphytumofficinalehairyrootsresultsinthecompleteeradicationofpyrrolizidinealkaloids
AT schemmerlingbrigitte crisprcas9mediatedgenomeeditingincomfreysymphytumofficinalehairyrootsresultsinthecompleteeradicationofpyrrolizidinealkaloids
AT oberdietrich crisprcas9mediatedgenomeeditingincomfreysymphytumofficinalehairyrootsresultsinthecompleteeradicationofpyrrolizidinealkaloids