Cargando…

Natural Co-Occurrence of Multiple Mycotoxins in Unprocessed Oats Grown in Ireland with Various Production Systems

The natural co-occurrence of 42 mycotoxins was investigated in unprocessed oat grains grown in Ireland. The sample set included a total of 208 oat crops harvested during 2015–2016 and produced using conventional, organic, or gluten free farming systems. A range of different toxins was identified, in...

Descripción completa

Detalles Bibliográficos
Autores principales: De Colli, Lorenzo, De Ruyck, Karl, Abdallah, Mohamed F., Finnan, John, Mullins, Ewen, Kildea, Steven, Spink, John, Elliott, Christopher, Danaher, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998419/
https://www.ncbi.nlm.nih.gov/pubmed/33806558
http://dx.doi.org/10.3390/toxins13030188
Descripción
Sumario:The natural co-occurrence of 42 mycotoxins was investigated in unprocessed oat grains grown in Ireland. The sample set included a total of 208 oat crops harvested during 2015–2016 and produced using conventional, organic, or gluten free farming systems. A range of different toxins was identified, including the major type A (neosolaniol, HT-2 and T-2 toxins, T-2 triol, and T-2-glucoside, co-occurring in 21 samples) and B trichothecenes (deoxynivalenol, nivalenol, and deoxynivalenol-3-glucoside), enniatins (B1, B, and A1, co-occurring in 12 samples), as well as beauvericin, alternariol, mycophenolic acid, and sterigmatocystin. The influences of sowing season, year, and production system were investigated, eventually indicating that the latter factor may have a higher impact than others on the production of certain mycotoxins in oats. The most frequently quantified compounds were HT-2 (51%) and T-2 (41%) toxins, with gluten free oats containing significantly lower concentrations of HT-2 compared to conventionally produced oats. Although the prevalence and concentrations of mycotoxin found in oat samples in this study should be substantially reduced by processing. However, as mycotoxin occurrence is clearly influenced by multiple factors, controlled field trials should be carried out to define optimal agronomic practices and mitigate mycotoxin production. Furthermore, this work highlights the need for regularly testing cereal-based foods with multi-residue analytical methods with wider specificities than the traditionally screened and regulated toxins, to generate knowledge on the occurrence of several mycotoxins that are, to date, rarely investigated.