Cargando…
Macrophage Plasticity and Function in the Lung Tumour Microenvironment Revealed in 3D Heterotypic Spheroid and Explant Models
In non-small cell lung cancer (NSCLC), stroma-resident and tumour-infiltrating macrophages may facilitate an immunosuppressive tumour microenvironment (TME) and hamper immunotherapeutic responses. Analysis of tumour-associated macrophage (TAM) plasticity in NSCLC is largely lacking. We established a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999110/ https://www.ncbi.nlm.nih.gov/pubmed/33804204 http://dx.doi.org/10.3390/biomedicines9030302 |
Sumario: | In non-small cell lung cancer (NSCLC), stroma-resident and tumour-infiltrating macrophages may facilitate an immunosuppressive tumour microenvironment (TME) and hamper immunotherapeutic responses. Analysis of tumour-associated macrophage (TAM) plasticity in NSCLC is largely lacking. We established a novel, multi-marker, dual analysis approach for assessing monocyte-derived macrophage (Mφ) polarisation and M1/M2 phenotypic plasticity. We developed a flow cytometry-based, two-marker analysis (CD64 and CD206) of CD14(+) cells. The phenotype and immune function of in vitro-induced TAMs was studied in a heterotypic spheroid and tumour-derived explant model of NSCLC. Heterotypic spheroids and NSCLC explants skewed Mφs from an M1- (CD206(lo)CD64(hi)) to M2-like (CD206(hi)CD64(lo)) phenotype. Lipopolysaccharide (LPS) and IFNγ treatment reversed M2-like Mφ polarisation, indicating the plasticity of Mφs. Importantly, antigen-specific CD8(+) T cell responses were reduced in the presence of tumour explant-conditioned Mφs, but not spheroid-conditioned Mφs, suggesting explants are likely a more relevant model of the immune TME than cell line-derived spheroids. Our data indicates the importance of multi-marker, functional analyses within Mφ subsets and the advantages of the ex vivo NSCLC explant model in immunomodulation studies. We highlight the plasticity of the M1/M2 phenotype using the explant model and provide a tool for studying therapeutic interventions designed to reprogram M2-like Mφ-induced immunosuppression. |
---|