Cargando…
Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms
Electroencephalography (EEG) signal classification is a challenging task due to the low signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification techniques, which are usually based on a predefined set of features extracted from the EEG band power dis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002580/ https://www.ncbi.nlm.nih.gov/pubmed/33802684 http://dx.doi.org/10.3390/s21062096 |