Cargando…
Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner
Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SI...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005845/ https://www.ncbi.nlm.nih.gov/pubmed/33744652 http://dx.doi.org/10.1016/j.redox.2021.101945 |
Sumario: | Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance. |
---|