Cargando…
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
Mutational signatures have emerged as powerful biomarkers in cancer patients, with prognostic and therapeutic implications. Wider clinical utility requires access to reproducible algorithms, which allow characterization of mutational signatures in a given tumor sample. Here, we show how mutational s...
Autores principales: | Rustad, Even H., Nadeu, Ferran, Angelopoulos, Nicos, Ziccheddu, Bachisio, Bolli, Niccolò, Puente, Xose S., Campo, Elias, Landgren, Ola, Maura, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007623/ https://www.ncbi.nlm.nih.gov/pubmed/33782531 http://dx.doi.org/10.1038/s42003-021-01938-0 |
Ejemplares similares
-
A practical guide for mutational signature analysis in hematological malignancies
por: Maura, Francesco, et al.
Publicado: (2019) -
Author Correction: A practical guide for mutational signature analysis in hematological malignancies
por: Maura, Francesco, et al.
Publicado: (2019) -
Timing the initiation of multiple myeloma
por: Rustad, Even H., et al.
Publicado: (2020) -
Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma
por: Maclachlan, Kylee H., et al.
Publicado: (2021) -
RFcaller: a machine learning approach combined with read-level features to detect somatic mutations
por: Díaz-Navarro, Ander, et al.
Publicado: (2023)