Cargando…
Machine learning predicts nucleosome binding modes of transcription factors
BACKGROUND: Most transcription factors (TFs) compete with nucleosomes to gain access to their cognate binding sites. Recent studies have identified several TF-nucleosome interaction modes including end binding (EB), oriented binding, periodic binding, dyad binding, groove binding, and gyre spanning....
Autores principales: | Kishan, K. C., Subramanya, Sridevi K., Li, Rui, Cui, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008688/ https://www.ncbi.nlm.nih.gov/pubmed/33784978 http://dx.doi.org/10.1186/s12859-021-04093-9 |
Ejemplares similares
-
Prediction of Nucleosome Positioning Based on Transcription Factor Binding Sites
por: Yi, Xianfu, et al.
Publicado: (2010) -
Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes
por: Talebzadeh, Mohammad, et al.
Publicado: (2014) -
Deep learning for histopathological segmentation of smooth muscle in the urinary bladder
por: Subramanya, Sridevi K., et al.
Publicado: (2023) -
Nucleosome binding by the pioneer transcription factor OCT4
por: Echigoya, Kenta, et al.
Publicado: (2020) -
Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding
por: He, Ximiao, et al.
Publicado: (2013)