Cargando…

Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer

Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibito...

Descripción completa

Detalles Bibliográficos
Autores principales: Baca, Sylvan C., Takeda, David Y., Seo, Ji-Heui, Hwang, Justin, Ku, Sheng Yu, Arafeh, Rand, Arnoff, Taylor, Agarwal, Supreet, Bell, Connor, O’Connor, Edward, Qiu, Xintao, Alaiwi, Sarah Abou, Corona, Rosario I., Fonseca, Marcos A. S., Giambartolomei, Claudia, Cejas, Paloma, Lim, Klothilda, He, Monica, Sheahan, Anjali, Nassar, Amin, Berchuck, Jacob E., Brown, Lisha, Nguyen, Holly M., Coleman, Ilsa M., Kaipainen, Arja, De Sarkar, Navonil, Nelson, Peter S., Morrissey, Colm, Korthauer, Keegan, Pomerantz, Mark M., Ellis, Leigh, Pasaniuc, Bogdan, Lawrenson, Kate, Kelly, Kathleen, Zoubeidi, Amina, Hahn, William C., Beltran, Himisha, Long, Henry W., Brown, Myles, Corey, Eva, Freedman, Matthew L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010057/
https://www.ncbi.nlm.nih.gov/pubmed/33785741
http://dx.doi.org/10.1038/s41467-021-22139-7
_version_ 1783672984113774592
author Baca, Sylvan C.
Takeda, David Y.
Seo, Ji-Heui
Hwang, Justin
Ku, Sheng Yu
Arafeh, Rand
Arnoff, Taylor
Agarwal, Supreet
Bell, Connor
O’Connor, Edward
Qiu, Xintao
Alaiwi, Sarah Abou
Corona, Rosario I.
Fonseca, Marcos A. S.
Giambartolomei, Claudia
Cejas, Paloma
Lim, Klothilda
He, Monica
Sheahan, Anjali
Nassar, Amin
Berchuck, Jacob E.
Brown, Lisha
Nguyen, Holly M.
Coleman, Ilsa M.
Kaipainen, Arja
De Sarkar, Navonil
Nelson, Peter S.
Morrissey, Colm
Korthauer, Keegan
Pomerantz, Mark M.
Ellis, Leigh
Pasaniuc, Bogdan
Lawrenson, Kate
Kelly, Kathleen
Zoubeidi, Amina
Hahn, William C.
Beltran, Himisha
Long, Henry W.
Brown, Myles
Corey, Eva
Freedman, Matthew L.
author_facet Baca, Sylvan C.
Takeda, David Y.
Seo, Ji-Heui
Hwang, Justin
Ku, Sheng Yu
Arafeh, Rand
Arnoff, Taylor
Agarwal, Supreet
Bell, Connor
O’Connor, Edward
Qiu, Xintao
Alaiwi, Sarah Abou
Corona, Rosario I.
Fonseca, Marcos A. S.
Giambartolomei, Claudia
Cejas, Paloma
Lim, Klothilda
He, Monica
Sheahan, Anjali
Nassar, Amin
Berchuck, Jacob E.
Brown, Lisha
Nguyen, Holly M.
Coleman, Ilsa M.
Kaipainen, Arja
De Sarkar, Navonil
Nelson, Peter S.
Morrissey, Colm
Korthauer, Keegan
Pomerantz, Mark M.
Ellis, Leigh
Pasaniuc, Bogdan
Lawrenson, Kate
Kelly, Kathleen
Zoubeidi, Amina
Hahn, William C.
Beltran, Himisha
Long, Henry W.
Brown, Myles
Corey, Eva
Freedman, Matthew L.
author_sort Baca, Sylvan C.
collection PubMed
description Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling.
format Online
Article
Text
id pubmed-8010057
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80100572021-04-16 Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer Baca, Sylvan C. Takeda, David Y. Seo, Ji-Heui Hwang, Justin Ku, Sheng Yu Arafeh, Rand Arnoff, Taylor Agarwal, Supreet Bell, Connor O’Connor, Edward Qiu, Xintao Alaiwi, Sarah Abou Corona, Rosario I. Fonseca, Marcos A. S. Giambartolomei, Claudia Cejas, Paloma Lim, Klothilda He, Monica Sheahan, Anjali Nassar, Amin Berchuck, Jacob E. Brown, Lisha Nguyen, Holly M. Coleman, Ilsa M. Kaipainen, Arja De Sarkar, Navonil Nelson, Peter S. Morrissey, Colm Korthauer, Keegan Pomerantz, Mark M. Ellis, Leigh Pasaniuc, Bogdan Lawrenson, Kate Kelly, Kathleen Zoubeidi, Amina Hahn, William C. Beltran, Himisha Long, Henry W. Brown, Myles Corey, Eva Freedman, Matthew L. Nat Commun Article Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling. Nature Publishing Group UK 2021-03-30 /pmc/articles/PMC8010057/ /pubmed/33785741 http://dx.doi.org/10.1038/s41467-021-22139-7 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Baca, Sylvan C.
Takeda, David Y.
Seo, Ji-Heui
Hwang, Justin
Ku, Sheng Yu
Arafeh, Rand
Arnoff, Taylor
Agarwal, Supreet
Bell, Connor
O’Connor, Edward
Qiu, Xintao
Alaiwi, Sarah Abou
Corona, Rosario I.
Fonseca, Marcos A. S.
Giambartolomei, Claudia
Cejas, Paloma
Lim, Klothilda
He, Monica
Sheahan, Anjali
Nassar, Amin
Berchuck, Jacob E.
Brown, Lisha
Nguyen, Holly M.
Coleman, Ilsa M.
Kaipainen, Arja
De Sarkar, Navonil
Nelson, Peter S.
Morrissey, Colm
Korthauer, Keegan
Pomerantz, Mark M.
Ellis, Leigh
Pasaniuc, Bogdan
Lawrenson, Kate
Kelly, Kathleen
Zoubeidi, Amina
Hahn, William C.
Beltran, Himisha
Long, Henry W.
Brown, Myles
Corey, Eva
Freedman, Matthew L.
Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title_full Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title_fullStr Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title_full_unstemmed Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title_short Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer
title_sort reprogramming of the foxa1 cistrome in treatment-emergent neuroendocrine prostate cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010057/
https://www.ncbi.nlm.nih.gov/pubmed/33785741
http://dx.doi.org/10.1038/s41467-021-22139-7
work_keys_str_mv AT bacasylvanc reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT takedadavidy reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT seojiheui reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT hwangjustin reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT kushengyu reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT arafehrand reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT arnofftaylor reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT agarwalsupreet reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT bellconnor reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT oconnoredward reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT qiuxintao reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT alaiwisarahabou reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT coronarosarioi reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT fonsecamarcosas reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT giambartolomeiclaudia reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT cejaspaloma reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT limklothilda reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT hemonica reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT sheahananjali reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT nassaramin reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT berchuckjacobe reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT brownlisha reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT nguyenhollym reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT colemanilsam reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT kaipainenarja reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT desarkarnavonil reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT nelsonpeters reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT morrisseycolm reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT korthauerkeegan reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT pomerantzmarkm reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT ellisleigh reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT pasaniucbogdan reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT lawrensonkate reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT kellykathleen reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT zoubeidiamina reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT hahnwilliamc reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT beltranhimisha reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT longhenryw reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT brownmyles reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT coreyeva reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer
AT freedmanmatthewl reprogrammingofthefoxa1cistromeintreatmentemergentneuroendocrineprostatecancer