Cargando…
Systematic prediction of drug resistance caused by transporter genes in cancer cells
To study the drug resistance problem caused by transporters, we leveraged multiple large-scale public data sets of drug sensitivity, cell line genetic and transcriptional profiles, and gene silencing experiments. Through systematic integration of these data sets, we built various machine learning mo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016963/ https://www.ncbi.nlm.nih.gov/pubmed/33795761 http://dx.doi.org/10.1038/s41598-021-86921-9 |
_version_ | 1783673965326106624 |
---|---|
author | Shen, Yao Yan, Zhipeng |
author_facet | Shen, Yao Yan, Zhipeng |
author_sort | Shen, Yao |
collection | PubMed |
description | To study the drug resistance problem caused by transporters, we leveraged multiple large-scale public data sets of drug sensitivity, cell line genetic and transcriptional profiles, and gene silencing experiments. Through systematic integration of these data sets, we built various machine learning models to predict the difference between cell viability upon drug treatment and the silencing of its target across the same cell lines. More than 50% of the models built with the same data set or with independent data sets successfully predicted the testing set with significant correlation to the ground truth data. Features selected by our models were also significantly enriched in known drug transporters annotated in DrugBank for more than 60% of the models. Novel drug-transporter interactions were discovered, such as lapatinib and gefitinib with ABCA1, olaparib and NVPADW742 with ABCC3, and gefitinib and AZ628 with SLC4A4. Furthermore, we identified ABCC3, SLC12A7, SLCO4A1, SERPINA1, and SLC22A3 as potential transporters for erlotinib, three of which are also significantly more highly expressed in patients who were resistant to therapy in a clinical trial. |
format | Online Article Text |
id | pubmed-8016963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-80169632021-04-07 Systematic prediction of drug resistance caused by transporter genes in cancer cells Shen, Yao Yan, Zhipeng Sci Rep Article To study the drug resistance problem caused by transporters, we leveraged multiple large-scale public data sets of drug sensitivity, cell line genetic and transcriptional profiles, and gene silencing experiments. Through systematic integration of these data sets, we built various machine learning models to predict the difference between cell viability upon drug treatment and the silencing of its target across the same cell lines. More than 50% of the models built with the same data set or with independent data sets successfully predicted the testing set with significant correlation to the ground truth data. Features selected by our models were also significantly enriched in known drug transporters annotated in DrugBank for more than 60% of the models. Novel drug-transporter interactions were discovered, such as lapatinib and gefitinib with ABCA1, olaparib and NVPADW742 with ABCC3, and gefitinib and AZ628 with SLC4A4. Furthermore, we identified ABCC3, SLC12A7, SLCO4A1, SERPINA1, and SLC22A3 as potential transporters for erlotinib, three of which are also significantly more highly expressed in patients who were resistant to therapy in a clinical trial. Nature Publishing Group UK 2021-04-01 /pmc/articles/PMC8016963/ /pubmed/33795761 http://dx.doi.org/10.1038/s41598-021-86921-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shen, Yao Yan, Zhipeng Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title | Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title_full | Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title_fullStr | Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title_full_unstemmed | Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title_short | Systematic prediction of drug resistance caused by transporter genes in cancer cells |
title_sort | systematic prediction of drug resistance caused by transporter genes in cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016963/ https://www.ncbi.nlm.nih.gov/pubmed/33795761 http://dx.doi.org/10.1038/s41598-021-86921-9 |
work_keys_str_mv | AT shenyao systematicpredictionofdrugresistancecausedbytransportergenesincancercells AT yanzhipeng systematicpredictionofdrugresistancecausedbytransportergenesincancercells |