Cargando…
Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) arises in a cirrhotic, pro-angiogenic microenvironment. Inhibiting angiogenesis is a key mode of action of multikinase inhibitors and current non-cirrhotic models are unable to predict treatment response. We present a novel mouse cirrhotic model...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020437/ https://www.ncbi.nlm.nih.gov/pubmed/33340714 http://dx.doi.org/10.1016/j.jcmgh.2020.12.009 |
_version_ | 1783674584031035392 |
---|---|
author | Huang, Daniel Q. Muthiah, Mark D. Zhou, Lei Jumat, Halisah Tan, Wan Xin Lee, Guan Huei Lim, Seng Gee Kow, Alfred Bonney, Glenn Shridhar, Iyer Lim, Yi Ting Wee, Aileen Pang, Yin Huei Soon, Gwyneth Chow, Pierce Dan, Yock Young |
author_facet | Huang, Daniel Q. Muthiah, Mark D. Zhou, Lei Jumat, Halisah Tan, Wan Xin Lee, Guan Huei Lim, Seng Gee Kow, Alfred Bonney, Glenn Shridhar, Iyer Lim, Yi Ting Wee, Aileen Pang, Yin Huei Soon, Gwyneth Chow, Pierce Dan, Yock Young |
author_sort | Huang, Daniel Q. |
collection | PubMed |
description | BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) arises in a cirrhotic, pro-angiogenic microenvironment. Inhibiting angiogenesis is a key mode of action of multikinase inhibitors and current non-cirrhotic models are unable to predict treatment response. We present a novel mouse cirrhotic model of xenotransplant that predicts the natural biology of HCC and allows personalized therapy. METHODS: Cirrhosis was induced in NOD Scid gamma mice with 4 months of thioacetamide administration. Patient derived xenografts (PDXs) were created by transplant of human HCC subcutaneously into non-cirrhotic mice and intra-hepatically into both cirrhotic and non-cirrhotic mice. The applicability of cirrhotic PDXs for drug testing was tested with 16 days of either sorafenib or lenvatinib. Treatment response was evaluated by MRI. RESULTS: 8 out of 19 (42%) human HCC engrafted in the cirrhotic model compared with only 3 out of 19 (16%) that engrafted in the subcutaneous non-cirrhotic model. Tumor vasculature was preserved in the cirrhotic model but was diminished in the non-cirrhotic models. Metastasis developed in 3 cirrhotic PDX lines and was associated with early HCC recurrence in all 3 corresponding patients (100%), compared with only 5 out of 16 (31%) of the other PDX lines, P = .027. The cirrhotic model was able to predict response and non-response to lenvatinib and sorafenib respectively in the corresponding patients. Response to lenvatinib in the cirrhotic PDX was associated with reduction in CD34, VEGFR2 and CLEC4G immunofluorescence area and intensity (all P ≤ .03). CONCLUSIONS: A clinically relevant cirrhotic PDX model preserves tumor angiogenesis and allows prediction of response to multikinase inhibitors for personalized therapy. |
format | Online Article Text |
id | pubmed-8020437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80204372021-04-08 Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy Huang, Daniel Q. Muthiah, Mark D. Zhou, Lei Jumat, Halisah Tan, Wan Xin Lee, Guan Huei Lim, Seng Gee Kow, Alfred Bonney, Glenn Shridhar, Iyer Lim, Yi Ting Wee, Aileen Pang, Yin Huei Soon, Gwyneth Chow, Pierce Dan, Yock Young Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) arises in a cirrhotic, pro-angiogenic microenvironment. Inhibiting angiogenesis is a key mode of action of multikinase inhibitors and current non-cirrhotic models are unable to predict treatment response. We present a novel mouse cirrhotic model of xenotransplant that predicts the natural biology of HCC and allows personalized therapy. METHODS: Cirrhosis was induced in NOD Scid gamma mice with 4 months of thioacetamide administration. Patient derived xenografts (PDXs) were created by transplant of human HCC subcutaneously into non-cirrhotic mice and intra-hepatically into both cirrhotic and non-cirrhotic mice. The applicability of cirrhotic PDXs for drug testing was tested with 16 days of either sorafenib or lenvatinib. Treatment response was evaluated by MRI. RESULTS: 8 out of 19 (42%) human HCC engrafted in the cirrhotic model compared with only 3 out of 19 (16%) that engrafted in the subcutaneous non-cirrhotic model. Tumor vasculature was preserved in the cirrhotic model but was diminished in the non-cirrhotic models. Metastasis developed in 3 cirrhotic PDX lines and was associated with early HCC recurrence in all 3 corresponding patients (100%), compared with only 5 out of 16 (31%) of the other PDX lines, P = .027. The cirrhotic model was able to predict response and non-response to lenvatinib and sorafenib respectively in the corresponding patients. Response to lenvatinib in the cirrhotic PDX was associated with reduction in CD34, VEGFR2 and CLEC4G immunofluorescence area and intensity (all P ≤ .03). CONCLUSIONS: A clinically relevant cirrhotic PDX model preserves tumor angiogenesis and allows prediction of response to multikinase inhibitors for personalized therapy. Elsevier 2020-12-16 /pmc/articles/PMC8020437/ /pubmed/33340714 http://dx.doi.org/10.1016/j.jcmgh.2020.12.009 Text en © 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Huang, Daniel Q. Muthiah, Mark D. Zhou, Lei Jumat, Halisah Tan, Wan Xin Lee, Guan Huei Lim, Seng Gee Kow, Alfred Bonney, Glenn Shridhar, Iyer Lim, Yi Ting Wee, Aileen Pang, Yin Huei Soon, Gwyneth Chow, Pierce Dan, Yock Young Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title | Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title_full | Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title_fullStr | Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title_full_unstemmed | Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title_short | Predicting HCC Response to Multikinase Inhibitors With In Vivo Cirrhotic Mouse Model for Personalized Therapy |
title_sort | predicting hcc response to multikinase inhibitors with in vivo cirrhotic mouse model for personalized therapy |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020437/ https://www.ncbi.nlm.nih.gov/pubmed/33340714 http://dx.doi.org/10.1016/j.jcmgh.2020.12.009 |
work_keys_str_mv | AT huangdanielq predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT muthiahmarkd predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT zhoulei predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT jumathalisah predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT tanwanxin predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT leeguanhuei predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT limsenggee predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT kowalfred predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT bonneyglenn predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT shridhariyer predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT limyiting predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT weeaileen predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT pangyinhuei predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT soongwyneth predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT chowpierce predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy AT danyockyoung predictinghccresponsetomultikinaseinhibitorswithinvivocirrhoticmousemodelforpersonalizedtherapy |