Cargando…

A matched comparison of revision rates of cemented Oxford Unicompartmental Knee Replacements with Single and Twin Peg femoral components, based on data from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man

Background and purpose — Registries report high revision rates after unicompartmental knee replacement (UKR) due, in part, to aseptic loosing. In an attempt to improve Oxford UKR femoral component fixation a new design was introduced with a Twin rather than a Single peg. We used the National Joint R...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammad, Hasan R, Matharu, Gulraj S, Judge, Andrew, Murray, David W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023905/
https://www.ncbi.nlm.nih.gov/pubmed/32420778
http://dx.doi.org/10.1080/17453674.2020.1748288
Descripción
Sumario:Background and purpose — Registries report high revision rates after unicompartmental knee replacement (UKR) due, in part, to aseptic loosing. In an attempt to improve Oxford UKR femoral component fixation a new design was introduced with a Twin rather than a Single peg. We used the National Joint Registry (NJR) to compare the 5-year outcomes of the Single and Twin Peg cemented Oxford UKRs. Patients and methods — We performed a retrospective observational study using NJR data on propensity score matched Single and Twin Peg UKRs (matched for patient, implant and surgical factors). Data on 2,834 Single Peg and 2,834 Twin Peg were analyzed. Cumulative implant survival was calculated using the Kaplan–Meier method and comparisons between groups performed using Cox regression models. Results — In the matched cohort, the mean follow up for both Single and Twin Peg UKRs was 3.3 (SD 2) and 3.4 years (SD 2) respectively. The 5-year cumulative implant survival rates for Single Peg and Twin Peg were 94.8% (95% CI 93.6–95.8) and 96.2% (CI 95.1–97.1) respectively. Implant revision rates were statistically significantly lower in the Twin Peg (hazard ratio [HR)] = 0.74; p = 0.04). The revision rate for femoral component aseptic loosening decreased significantly (p = 0.03) from 0.4% (n = 11) with the Single Peg to 0.1% (n = 3) with the Twin Peg. The revision rate for pain decreased significantly (p = 0.01) from 0.8% (n = 23) with the Single Peg to 0.3% (n = 9) with the Twin Peg. No other reasons for revision had significant differences in revision rates. Interpretation — The revision rate for the cemented Twin Peg Oxford UKR was 26% less than the Single Peg Oxford UKR. This was mainly because the revision rates for femoral loosening and pain more than halved. This suggests that the Twin Peg component should be used in preference to the Single Peg design.