Cargando…
High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein
Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024697/ https://www.ncbi.nlm.nih.gov/pubmed/33639161 http://dx.doi.org/10.1016/j.jbc.2021.100461 |
_version_ | 1783675363802480640 |
---|---|
author | Song, Daisheng Bigham, Abigail W. Lee, Frank S. |
author_facet | Song, Daisheng Bigham, Abigail W. Lee, Frank S. |
author_sort | Song, Daisheng |
collection | PubMed |
description | Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of these changes. Deer mice (Peromyscus maniculatus) live at both low and high altitudes in North America, providing an opportunity to identify functionally important genetic changes. High-altitude deer mice show evidence of natural selection on the Epas1 gene, which encodes for hypoxia-inducible factor-2α (Hif-2α), a central transcription factor of the hypoxia-inducible factor pathway. An SNP encoding for a T755M change in the Hif-2α protein is highly enriched in high-altitude deer mice, but its functional significance is unknown. Here, using coimmunoprecipitation and transcriptional activity assays, we show that the T755M mutation produces a defect in the interaction of Hif-2α with the transcriptional coactivator CREB-binding protein. This results in a loss of function because of decreased transcriptional activity. Intriguingly, the effect of this mutation depends on the amino acid context. Interchanges between methionine and threonine at the corresponding position in house mouse (Mus musculus) Hif-2α are without effects on CREB-binding protein binding. Furthermore, transfer of a set of deer mouse–specific Hif-2α amino acids to house mouse Hif-2α is sufficient to confer sensitivity of house mouse Hif-2α to the T755M substitution. These findings provide insight into high-altitude adaptation in deer mice and evolution at the Epas1 locus. |
format | Online Article Text |
id | pubmed-8024697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-80246972021-04-12 High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein Song, Daisheng Bigham, Abigail W. Lee, Frank S. J Biol Chem Accelerated Communication Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of these changes. Deer mice (Peromyscus maniculatus) live at both low and high altitudes in North America, providing an opportunity to identify functionally important genetic changes. High-altitude deer mice show evidence of natural selection on the Epas1 gene, which encodes for hypoxia-inducible factor-2α (Hif-2α), a central transcription factor of the hypoxia-inducible factor pathway. An SNP encoding for a T755M change in the Hif-2α protein is highly enriched in high-altitude deer mice, but its functional significance is unknown. Here, using coimmunoprecipitation and transcriptional activity assays, we show that the T755M mutation produces a defect in the interaction of Hif-2α with the transcriptional coactivator CREB-binding protein. This results in a loss of function because of decreased transcriptional activity. Intriguingly, the effect of this mutation depends on the amino acid context. Interchanges between methionine and threonine at the corresponding position in house mouse (Mus musculus) Hif-2α are without effects on CREB-binding protein binding. Furthermore, transfer of a set of deer mouse–specific Hif-2α amino acids to house mouse Hif-2α is sufficient to confer sensitivity of house mouse Hif-2α to the T755M substitution. These findings provide insight into high-altitude adaptation in deer mice and evolution at the Epas1 locus. American Society for Biochemistry and Molecular Biology 2021-02-25 /pmc/articles/PMC8024697/ /pubmed/33639161 http://dx.doi.org/10.1016/j.jbc.2021.100461 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Accelerated Communication Song, Daisheng Bigham, Abigail W. Lee, Frank S. High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title | High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title_full | High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title_fullStr | High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title_full_unstemmed | High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title_short | High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein |
title_sort | high-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with creb-binding protein |
topic | Accelerated Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024697/ https://www.ncbi.nlm.nih.gov/pubmed/33639161 http://dx.doi.org/10.1016/j.jbc.2021.100461 |
work_keys_str_mv | AT songdaisheng highaltitudedeermousehypoxiainduciblefactor2ashowsdefectiveinteractionwithcrebbindingprotein AT bighamabigailw highaltitudedeermousehypoxiainduciblefactor2ashowsdefectiveinteractionwithcrebbindingprotein AT leefranks highaltitudedeermousehypoxiainduciblefactor2ashowsdefectiveinteractionwithcrebbindingprotein |