Cargando…

Vagabond: bond-based parametrization reduces overfitting for refinement of proteins

Structural biology methods have delivered over 150 000 high-resolution structures of macromolecules, which have fundamentally altered our understanding of biology and our approach to developing new medicines. However, the description of molecular flexibility is instrinsically flawed and in almost al...

Descripción completa

Detalles Bibliográficos
Autor principal: Ginn, Helen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025884/
https://www.ncbi.nlm.nih.gov/pubmed/33825703
http://dx.doi.org/10.1107/S2059798321000826
Descripción
Sumario:Structural biology methods have delivered over 150 000 high-resolution structures of macromolecules, which have fundamentally altered our understanding of biology and our approach to developing new medicines. However, the description of molecular flexibility is instrinsically flawed and in almost all cases, regardless of the experimental method used for structure determination, there remains a strong overfitting bias during molecular model building and refinement. In the worst case this can lead to wholly incorrect structures and thus incorrect biological interpretations. Here, by reparametrizing the description of these complex structures in terms of bonds rather than atomic positions, and by modelling flexibility using a deterministic ensemble of structures, it is demonstrated that structures can be described using fewer parameters than in conventional refinement. The current implementation, applied to X-ray diffraction data, significantly reduces the extent of overfitting, allowing the experimental data to reveal more biological information in electron-density maps.