Cargando…
CEM500K, a large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning
Automated segmentation of cellular electron microscopy (EM) datasets remains a challenge. Supervised deep learning (DL) methods that rely on region-of-interest (ROI) annotations yield models that fail to generalize to unrelated datasets. Newer unsupervised DL algorithms require relevant pre-training...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032397/ https://www.ncbi.nlm.nih.gov/pubmed/33830015 http://dx.doi.org/10.7554/eLife.65894 |