Cargando…

Blood leukocytes recapitulate diabetogenic peptide–MHC-II complexes displayed in the pancreatic islets

Assessing the self-peptides presented by susceptible major histocompatibility complex (MHC) molecules is crucial for evaluating the pathogenesis and therapeutics of tissue-specific autoimmune diseases. However, direct examination of such MHC-bound peptides displayed in the target organ remains large...

Descripción completa

Detalles Bibliográficos
Autores principales: Vomund, Anthony N., Lichti, Cheryl F., Peterson, Orion J., Arbelaez, Ana Maria, Wan, Xiaoxiao, Unanue, Emil R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034384/
https://www.ncbi.nlm.nih.gov/pubmed/33822842
http://dx.doi.org/10.1084/jem.20202530
Descripción
Sumario:Assessing the self-peptides presented by susceptible major histocompatibility complex (MHC) molecules is crucial for evaluating the pathogenesis and therapeutics of tissue-specific autoimmune diseases. However, direct examination of such MHC-bound peptides displayed in the target organ remains largely impractical. Here, we demonstrate that the blood leukocytes from the nonobese diabetic (NOD) mice presented peptide epitopes to autoreactive CD4 T cells. These peptides were bound to the autoimmune class II MHC molecule (MHC-II) I-A(g7) and originated from insulin B-chain and C-peptide. The presentation required a glucose challenge, which stimulated the release of the insulin peptides from the pancreatic islets. The circulating leukocytes, especially the B cells, promptly captured and presented these peptides. Mass spectrometry analysis of the leukocyte MHC-II peptidome revealed a series of β cell–derived peptides, with identical sequences to those previously identified in the islet MHC-II peptidome. Thus, the blood leukocyte peptidome echoes that found in islets and serves to identify immunogenic peptides in an otherwise inaccessible tissue.