Cargando…
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
SIMPLE SUMMARY: Breast cancer (BrCa) is characterized by aberrant DNA methylation. We leveraged high-throughput methylation data from BrCa and normal breast tissues and identified 11,176 to 27,786 differentially methylated genes (DMGs) against clinically relevant end-points. Innovative automated mac...
Autores principales: | Panagopoulou, Maria, Karaglani, Makrina, Manolopoulos, Vangelis G., Iliopoulos, Ioannis, Tsamardinos, Ioannis, Chatzaki, Ekaterini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037759/ https://www.ncbi.nlm.nih.gov/pubmed/33918195 http://dx.doi.org/10.3390/cancers13071677 |
Ejemplares similares
-
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Papoutsoglou, Georgios, et al.
Publicado: (2021) -
ENPP2 Promoter Methylation Correlates with Decreased Gene Expression in Breast Cancer: Implementation as a Liquid Biopsy Biomarker
por: Panagopoulou, Maria, et al.
Publicado: (2022)