Cargando…

An Auto-Focus Method of Microscope for the Surface Structure of Transparent Materials under Transmission Illumination

This paper is concerned with auto-focus of microscopes for the surface structure of transparent materials under transmission illumination, where two distinct focus states appear in the focusing process and the focus position is located between the two states with the local minimum of sharpness. Plea...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Yang, Xiong, Yonghua, Yang, Yunhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038353/
https://www.ncbi.nlm.nih.gov/pubmed/33918521
http://dx.doi.org/10.3390/s21072487
Descripción
Sumario:This paper is concerned with auto-focus of microscopes for the surface structure of transparent materials under transmission illumination, where two distinct focus states appear in the focusing process and the focus position is located between the two states with the local minimum of sharpness. Please note that most existing results are derived for one focus state with the global maximum value of sharpness, they cannot provide a feasible solution to this particular problem. In this paper, an auto-focus method is developed for such a specific situation with two focus states. Firstly, a focus state recognition model, which is essentially an image classification model based on a deep convolution neural network, is established to identify the focus states of the microscopy system. Then, an endpoint search algorithm which is an evolutionary algorithm based on differential evolution is designed to obtain the positions of the two endpoints of the region where the real focus position is located, by updating the parameters according to the focus states. At last, a region search algorithm is devised to locate the focus position. The experimental results show that our method can achieve auto-focus rapidly and accurately for such a specific situation with two focus states.