Cargando…
Bayesian Particle Instance Segmentation for Electron Microscopy Image Quantification
[Image: see text] Automating the analysis portion of materials characterization by electron microscopy (EM) has the potential to accelerate the process of scientific discovery. To this end, we present a Bayesian deep-learning model for semantic segmentation and localization of particle instances in...
Autores principales: | Yildirim, Batuhan, Cole, Jacqueline M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041280/ https://www.ncbi.nlm.nih.gov/pubmed/33682402 http://dx.doi.org/10.1021/acs.jcim.0c01455 |
Ejemplares similares
-
Calculating small-angle scattering intensity functions from electron-microscopy images
por: Yildirim, Batuhan, et al.
Publicado: (2022) -
Deep Learning Based Instance Segmentation of Titanium Dioxide Particles in the Form of Agglomerates in Scanning Electron Microscopy
por: Monchot, Paul, et al.
Publicado: (2021) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning
por: Gudhe, Naga Raju, et al.
Publicado: (2023) -
NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images
por: Wu, Liming, et al.
Publicado: (2023)