Cargando…
A benchmark for RNA-seq deconvolution analysis under dynamic testing environments
BACKGROUND: Deconvolution analyses have been widely used to track compositional alterations of cell types in gene expression data. Although a large number of novel methods have been developed, due to a lack of understanding of the effects of modeling assumptions and tuning parameters, it is challeng...
Autores principales: | Jin, Haijing, Liu, Zhandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042713/ https://www.ncbi.nlm.nih.gov/pubmed/33845875 http://dx.doi.org/10.1186/s13059-021-02290-6 |
Ejemplares similares
-
Comprehensive evaluation of RNA-seq quantification methods for linearity
por: Jin, Haijing, et al.
Publicado: (2017) -
Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes
por: Cobos, Francisco Avila, et al.
Publicado: (2023) -
Benchmarking of cell type deconvolution pipelines for transcriptomics data
por: Avila Cobos, Francisco, et al.
Publicado: (2020) -
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
por: Yan, Lulu, et al.
Publicado: (2022) -
An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
por: Sun, Xifang, et al.
Publicado: (2019)