Cargando…
Calculation of therapeutic antibody viscosity with coarse-grained models, hydrodynamic calculations and machine learning-based parameters
High viscosity presents a challenge for manufacturing and drug delivery of therapeutic antibodies. The viscosity is determined by protein–protein interactions among many antibodies. Molecular simulation is a promising method to study protein–protein interactions; however, all-atom models do not allo...
Autores principales: | Lai, Pin-Kuang, Swan, James W., Trout, Bernhardt L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043186/ https://www.ncbi.nlm.nih.gov/pubmed/33834944 http://dx.doi.org/10.1080/19420862.2021.1907882 |
Ejemplares similares
-
Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics
por: Lai, Pin-Kuang, et al.
Publicado: (2022) -
Exploring a coarse-grained distributive strategy for finite-difference Poisson–Boltzmann calculations
por: Hsieh, Meng-Juei, et al.
Publicado: (2010) -
Hydrodynamic calculations on solid and liquid targets
por: Eaton, Terry W, et al.
Publicado: (1984) -
Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics
por: Thorsteinson, Nels, et al.
Publicado: (2021) -
Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions
por: Lai, Pin-Kuang, et al.
Publicado: (2021)