Cargando…

An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding

Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartsch, Annika, Ives, Callum M., Kattner, Christof, Pein, Florian, Diehn, Manuel, Tanabe, Mikio, Munk, Axel, Zachariae, Ulrich, Steinem, Claudia, Llabrés, Salomé
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047873/
https://www.ncbi.nlm.nih.gov/pubmed/33675718
http://dx.doi.org/10.1016/j.bbamem.2021.183601
_version_ 1783679128451416064
author Bartsch, Annika
Ives, Callum M.
Kattner, Christof
Pein, Florian
Diehn, Manuel
Tanabe, Mikio
Munk, Axel
Zachariae, Ulrich
Steinem, Claudia
Llabrés, Salomé
author_facet Bartsch, Annika
Ives, Callum M.
Kattner, Christof
Pein, Florian
Diehn, Manuel
Tanabe, Mikio
Munk, Axel
Zachariae, Ulrich
Steinem, Claudia
Llabrés, Salomé
author_sort Bartsch, Annika
collection PubMed
description Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria.
format Online
Article
Text
id pubmed-8047873
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80478732021-06-01 An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding Bartsch, Annika Ives, Callum M. Kattner, Christof Pein, Florian Diehn, Manuel Tanabe, Mikio Munk, Axel Zachariae, Ulrich Steinem, Claudia Llabrés, Salomé Biochim Biophys Acta Biomembr Article Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria. Elsevier 2021-06-01 /pmc/articles/PMC8047873/ /pubmed/33675718 http://dx.doi.org/10.1016/j.bbamem.2021.183601 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bartsch, Annika
Ives, Callum M.
Kattner, Christof
Pein, Florian
Diehn, Manuel
Tanabe, Mikio
Munk, Axel
Zachariae, Ulrich
Steinem, Claudia
Llabrés, Salomé
An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title_full An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title_fullStr An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title_full_unstemmed An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title_short An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding
title_sort antibiotic-resistance conferring mutation in a neisserial porin: structure, ion flux, and ampicillin binding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047873/
https://www.ncbi.nlm.nih.gov/pubmed/33675718
http://dx.doi.org/10.1016/j.bbamem.2021.183601
work_keys_str_mv AT bartschannika anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT ivescallumm anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT kattnerchristof anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT peinflorian anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT diehnmanuel anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT tanabemikio anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT munkaxel anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT zachariaeulrich anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT steinemclaudia anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT llabressalome anantibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT bartschannika antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT ivescallumm antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT kattnerchristof antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT peinflorian antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT diehnmanuel antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT tanabemikio antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT munkaxel antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT zachariaeulrich antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT steinemclaudia antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding
AT llabressalome antibioticresistanceconferringmutationinaneisserialporinstructureionfluxandampicillinbinding