Cargando…
Lysophosphatidic acid (LPA)-antibody (504B3) engagement detected by interferometry identifies off-target binding
BACKGROUND: Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that acts through its six cognate G protein-coupled receptors. As a family, lysophospholipids have already produced medicines (e.g., sphingosine 1-phosphate) as is being pursued for LPA through the use of specific antibodies tha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048308/ https://www.ncbi.nlm.nih.gov/pubmed/33853612 http://dx.doi.org/10.1186/s12944-021-01454-4 |
Sumario: | BACKGROUND: Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that acts through its six cognate G protein-coupled receptors. As a family, lysophospholipids have already produced medicines (e.g., sphingosine 1-phosphate) as is being pursued for LPA through the use of specific antibodies that reduce ligand availability. METHODS: The binding properties of a commercially available, reportedly specific, monoclonal LPA antibody named 504B3 that is related to the clinical candidate Lpathomab/LT3015 were reexamined using a free solution assay (FSA) measured in a compensated interferometric reader (CIR). RESULTS: Measurement of 504B3 binding properties with an FSA-CIR approach revealed similar binding affinities for 504B3 against LPA as well as the non-LPA lipids, phosphatidic acid (PA) and lysophosphatidylcholine (LPC). CONCLUSIONS: Antibody binding specificity and sensitivity, particularly involving lipid ligands, can be assessed in solution and without labels using FSA-CIR. These findings could affect interpretations of both current and past basic and clinical studies employing 504B3 and related anti-LPA antibodies. |
---|