Cargando…
Coupling sparse Cox models with clustering of longitudinal transcriptomics data for trauma prognosis
BACKGROUND: Longitudinal gene expression analysis and survival modeling have been proved to add valuable biological and clinical knowledge. This study proposes a novel framework to discover gene signatures and patterns in a high-dimensional time series transcriptomics data and to assess their associ...
Autores principales: | Constantino, Cláudia S., Carvalho, Alexandra M., Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048345/ https://www.ncbi.nlm.nih.gov/pubmed/33853663 http://dx.doi.org/10.1186/s13040-021-00257-8 |
Ejemplares similares
-
AliClu - Temporal sequence alignment for clustering longitudinal clinical data
por: Rama, Kishan, et al.
Publicado: (2019) -
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping
por: Hampton, Kristen H, et al.
Publicado: (2011) -
PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput data
por: Hao, Jie, et al.
Publicado: (2018) -
ROSIE: RObust Sparse ensemble for outlIEr detection and gene
selection in cancer omics data
por: Jensch, Antje, et al.
Publicado: (2022) -
PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
por: Lemsara, Amina, et al.
Publicado: (2020)