The geography of metapopulation synchrony in dendritic river networks

Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvia...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsen, Stefano, Comte, Lise, Filipa Filipe, Ana, Fortin, Marie‐Josée, Jacquet, Claire, Ryser, Remo, Tedesco, Pablo A., Brose, Ulrich, Erős, Tibor, Giam, Xingli, Irving, Katie, Ruhi, Albert, Sharma, Sapna, Olden, Julian D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049041/
https://www.ncbi.nlm.nih.gov/pubmed/33619868
http://dx.doi.org/10.1111/ele.13699
_version_ 1783679352857165824
author Larsen, Stefano
Comte, Lise
Filipa Filipe, Ana
Fortin, Marie‐Josée
Jacquet, Claire
Ryser, Remo
Tedesco, Pablo A.
Brose, Ulrich
Erős, Tibor
Giam, Xingli
Irving, Katie
Ruhi, Albert
Sharma, Sapna
Olden, Julian D.
author_facet Larsen, Stefano
Comte, Lise
Filipa Filipe, Ana
Fortin, Marie‐Josée
Jacquet, Claire
Ryser, Remo
Tedesco, Pablo A.
Brose, Ulrich
Erős, Tibor
Giam, Xingli
Irving, Katie
Ruhi, Albert
Sharma, Sapna
Olden, Julian D.
author_sort Larsen, Stefano
collection PubMed
description Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats.
format Online
Article
Text
id pubmed-8049041
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80490412021-04-21 The geography of metapopulation synchrony in dendritic river networks Larsen, Stefano Comte, Lise Filipa Filipe, Ana Fortin, Marie‐Josée Jacquet, Claire Ryser, Remo Tedesco, Pablo A. Brose, Ulrich Erős, Tibor Giam, Xingli Irving, Katie Ruhi, Albert Sharma, Sapna Olden, Julian D. Ecol Lett Letters Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats. John Wiley and Sons Inc. 2021-02-22 2021-04 /pmc/articles/PMC8049041/ /pubmed/33619868 http://dx.doi.org/10.1111/ele.13699 Text en © 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Letters
Larsen, Stefano
Comte, Lise
Filipa Filipe, Ana
Fortin, Marie‐Josée
Jacquet, Claire
Ryser, Remo
Tedesco, Pablo A.
Brose, Ulrich
Erős, Tibor
Giam, Xingli
Irving, Katie
Ruhi, Albert
Sharma, Sapna
Olden, Julian D.
The geography of metapopulation synchrony in dendritic river networks
title The geography of metapopulation synchrony in dendritic river networks
title_full The geography of metapopulation synchrony in dendritic river networks
title_fullStr The geography of metapopulation synchrony in dendritic river networks
title_full_unstemmed The geography of metapopulation synchrony in dendritic river networks
title_short The geography of metapopulation synchrony in dendritic river networks
title_sort geography of metapopulation synchrony in dendritic river networks
topic Letters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049041/
https://www.ncbi.nlm.nih.gov/pubmed/33619868
http://dx.doi.org/10.1111/ele.13699
work_keys_str_mv AT larsenstefano thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT comtelise thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT filipafilipeana thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT fortinmariejosee thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT jacquetclaire thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT ryserremo thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT tedescopabloa thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT broseulrich thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT erostibor thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT giamxingli thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT irvingkatie thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT ruhialbert thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT sharmasapna thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT oldenjuliand thegeographyofmetapopulationsynchronyindendriticrivernetworks
AT larsenstefano geographyofmetapopulationsynchronyindendriticrivernetworks
AT comtelise geographyofmetapopulationsynchronyindendriticrivernetworks
AT filipafilipeana geographyofmetapopulationsynchronyindendriticrivernetworks
AT fortinmariejosee geographyofmetapopulationsynchronyindendriticrivernetworks
AT jacquetclaire geographyofmetapopulationsynchronyindendriticrivernetworks
AT ryserremo geographyofmetapopulationsynchronyindendriticrivernetworks
AT tedescopabloa geographyofmetapopulationsynchronyindendriticrivernetworks
AT broseulrich geographyofmetapopulationsynchronyindendriticrivernetworks
AT erostibor geographyofmetapopulationsynchronyindendriticrivernetworks
AT giamxingli geographyofmetapopulationsynchronyindendriticrivernetworks
AT irvingkatie geographyofmetapopulationsynchronyindendriticrivernetworks
AT ruhialbert geographyofmetapopulationsynchronyindendriticrivernetworks
AT sharmasapna geographyofmetapopulationsynchronyindendriticrivernetworks
AT oldenjuliand geographyofmetapopulationsynchronyindendriticrivernetworks