The geography of metapopulation synchrony in dendritic river networks
Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvia...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049041/ https://www.ncbi.nlm.nih.gov/pubmed/33619868 http://dx.doi.org/10.1111/ele.13699 |
_version_ | 1783679352857165824 |
---|---|
author | Larsen, Stefano Comte, Lise Filipa Filipe, Ana Fortin, Marie‐Josée Jacquet, Claire Ryser, Remo Tedesco, Pablo A. Brose, Ulrich Erős, Tibor Giam, Xingli Irving, Katie Ruhi, Albert Sharma, Sapna Olden, Julian D. |
author_facet | Larsen, Stefano Comte, Lise Filipa Filipe, Ana Fortin, Marie‐Josée Jacquet, Claire Ryser, Remo Tedesco, Pablo A. Brose, Ulrich Erős, Tibor Giam, Xingli Irving, Katie Ruhi, Albert Sharma, Sapna Olden, Julian D. |
author_sort | Larsen, Stefano |
collection | PubMed |
description | Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats. |
format | Online Article Text |
id | pubmed-8049041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80490412021-04-21 The geography of metapopulation synchrony in dendritic river networks Larsen, Stefano Comte, Lise Filipa Filipe, Ana Fortin, Marie‐Josée Jacquet, Claire Ryser, Remo Tedesco, Pablo A. Brose, Ulrich Erős, Tibor Giam, Xingli Irving, Katie Ruhi, Albert Sharma, Sapna Olden, Julian D. Ecol Lett Letters Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats. John Wiley and Sons Inc. 2021-02-22 2021-04 /pmc/articles/PMC8049041/ /pubmed/33619868 http://dx.doi.org/10.1111/ele.13699 Text en © 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Letters Larsen, Stefano Comte, Lise Filipa Filipe, Ana Fortin, Marie‐Josée Jacquet, Claire Ryser, Remo Tedesco, Pablo A. Brose, Ulrich Erős, Tibor Giam, Xingli Irving, Katie Ruhi, Albert Sharma, Sapna Olden, Julian D. The geography of metapopulation synchrony in dendritic river networks |
title | The geography of metapopulation synchrony in dendritic river networks |
title_full | The geography of metapopulation synchrony in dendritic river networks |
title_fullStr | The geography of metapopulation synchrony in dendritic river networks |
title_full_unstemmed | The geography of metapopulation synchrony in dendritic river networks |
title_short | The geography of metapopulation synchrony in dendritic river networks |
title_sort | geography of metapopulation synchrony in dendritic river networks |
topic | Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049041/ https://www.ncbi.nlm.nih.gov/pubmed/33619868 http://dx.doi.org/10.1111/ele.13699 |
work_keys_str_mv | AT larsenstefano thegeographyofmetapopulationsynchronyindendriticrivernetworks AT comtelise thegeographyofmetapopulationsynchronyindendriticrivernetworks AT filipafilipeana thegeographyofmetapopulationsynchronyindendriticrivernetworks AT fortinmariejosee thegeographyofmetapopulationsynchronyindendriticrivernetworks AT jacquetclaire thegeographyofmetapopulationsynchronyindendriticrivernetworks AT ryserremo thegeographyofmetapopulationsynchronyindendriticrivernetworks AT tedescopabloa thegeographyofmetapopulationsynchronyindendriticrivernetworks AT broseulrich thegeographyofmetapopulationsynchronyindendriticrivernetworks AT erostibor thegeographyofmetapopulationsynchronyindendriticrivernetworks AT giamxingli thegeographyofmetapopulationsynchronyindendriticrivernetworks AT irvingkatie thegeographyofmetapopulationsynchronyindendriticrivernetworks AT ruhialbert thegeographyofmetapopulationsynchronyindendriticrivernetworks AT sharmasapna thegeographyofmetapopulationsynchronyindendriticrivernetworks AT oldenjuliand thegeographyofmetapopulationsynchronyindendriticrivernetworks AT larsenstefano geographyofmetapopulationsynchronyindendriticrivernetworks AT comtelise geographyofmetapopulationsynchronyindendriticrivernetworks AT filipafilipeana geographyofmetapopulationsynchronyindendriticrivernetworks AT fortinmariejosee geographyofmetapopulationsynchronyindendriticrivernetworks AT jacquetclaire geographyofmetapopulationsynchronyindendriticrivernetworks AT ryserremo geographyofmetapopulationsynchronyindendriticrivernetworks AT tedescopabloa geographyofmetapopulationsynchronyindendriticrivernetworks AT broseulrich geographyofmetapopulationsynchronyindendriticrivernetworks AT erostibor geographyofmetapopulationsynchronyindendriticrivernetworks AT giamxingli geographyofmetapopulationsynchronyindendriticrivernetworks AT irvingkatie geographyofmetapopulationsynchronyindendriticrivernetworks AT ruhialbert geographyofmetapopulationsynchronyindendriticrivernetworks AT sharmasapna geographyofmetapopulationsynchronyindendriticrivernetworks AT oldenjuliand geographyofmetapopulationsynchronyindendriticrivernetworks |