Cargando…
Motif-driven interactions between RNA and PRC2 are rheostats that regulate transcription elongation
Although Polycomb repressive complex 2 (PRC2) is now recognized as an RNA-binding complex, the full range of binding motifs and why PRC2-RNA complexes often associate with active genes have not been elucidated. Here we identify high-affinity RNA motifs whose mutations weaken PRC2 binding and attenua...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050941/ https://www.ncbi.nlm.nih.gov/pubmed/33398172 http://dx.doi.org/10.1038/s41594-020-00535-9 |
Sumario: | Although Polycomb repressive complex 2 (PRC2) is now recognized as an RNA-binding complex, the full range of binding motifs and why PRC2-RNA complexes often associate with active genes have not been elucidated. Here we identify high-affinity RNA motifs whose mutations weaken PRC2 binding and attenuate its repressive function in mouse embryonic stem cells. Interactions occur at promoter-proximal regions and frequently coincide with pausing of RNA Polymerase II (POL-II). Surprisingly, while PRC2-associated nascent transcripts are highly expressed, ablating PRC2 further upregulates expression via loss of pausing and enhanced transcription elongation. Thus, PRC2-nascent RNA complexes operate as rheostats to fine-tune transcription by regulating transitions between pausing and elongation, explaining why PRC2-RNA complexes frequently occur within active genes. Nascent RNA also targets PRC2 in cis and downregulates neighboring genes. We propose a unifying model in which RNA specifically recruits PRC2 to repress genes through POL-II pausing and, more classically, H3K27-trimethylation. |
---|