Cargando…

Mitigating background caused by extraneous scattering in small-angle neutron scattering instrument design

Measurements, calculations and design ideas to mitigate background caused by extraneous scattering in small-angle neutron scattering (SANS) instruments are presented. Scattering includes processes such as incoherent scattering, inelastic scattering and Bragg diffraction. Three primary sources of thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Barker, John George, Cook, Jeremy C., Chabot, Jean Philippe, Kline, Steven R., Zhang, Zhenhuan, Gagnon, Cedric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056761/
https://www.ncbi.nlm.nih.gov/pubmed/33953652
http://dx.doi.org/10.1107/S1600576721001084
Descripción
Sumario:Measurements, calculations and design ideas to mitigate background caused by extraneous scattering in small-angle neutron scattering (SANS) instruments are presented. Scattering includes processes such as incoherent scattering, inelastic scattering and Bragg diffraction. Three primary sources of this type of background are investigated: the beam stop located in front of the detector, the inside lining of the detector vessel and the environment surrounding the sample. SANS measurements were made where materials with different albedos were placed in all three locations. Additional measurements of the angle-dependent scattering over the angular range of 0.7π–0.95π rad were completed on 16 different shielding materials at five wavelengths. The data were extrapolated to cover scattering angles from π/2 to π rad in order to estimate the materials’ albedos. Modifications to existing SANS instruments and sample environments to mitigate extraneous scattering from surfaces are discussed.