Cargando…
Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses
MOTIVATION: In recent years, the well-known Infinite Sites Assumption has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging single-cell sequencing (SCS) techniques have shown evidence...
Autores principales: | Ciccolella, Simone, Ricketts, Camir, Soto Gomez, Mauricio, Patterson, Murray, Silverbush, Dana, Bonizzoni, Paola, Hajirasouliha, Iman, Della Vedova, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058767/ https://www.ncbi.nlm.nih.gov/pubmed/32805010 http://dx.doi.org/10.1093/bioinformatics/btaa722 |
Ejemplares similares
-
gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data
por: Ciccolella, Simone, et al.
Publicado: (2020) -
Accurate and fast clade assignment via deep learning and frequency chaos game representation
por: Avila Cartes, Jorge, et al.
Publicado: (2022) -
Triplet-based similarity score for fully multilabeled trees with poly-occurring labels
por: Ciccolella, Simone, et al.
Publicado: (2020) -
MALVIRUS: an integrated application for viral variant analysis
por: Ciccolella, Simone, et al.
Publicado: (2022) -
PhISCS: a combinatorial approach for subperfect tumor phylogeny reconstruction via integrative use of single-cell and bulk sequencing data
por: Malikic, Salem, et al.
Publicado: (2019)