Cargando…

Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation

BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneousl...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lijin, Zhang, Xiuli, Wang, Xiaoli, Kim, Samuel W., Herndon, John M., Becker-Hapak, Michelle K., Carreno, Beatriz M., Myers, Nancy B., Sturmoski, Mark A., McLellan, Michael D., Miller, Christopher A., Johanns, Tanner M., Tan, Benjamin R., Dunn, Gavin P., Fleming, Timothy P., Hansen, Ted H., Goedegebuure, S. Peter, Gillanders, William E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059244/
https://www.ncbi.nlm.nih.gov/pubmed/33879241
http://dx.doi.org/10.1186/s13073-021-00872-4
_version_ 1783681163883184128
author Li, Lijin
Zhang, Xiuli
Wang, Xiaoli
Kim, Samuel W.
Herndon, John M.
Becker-Hapak, Michelle K.
Carreno, Beatriz M.
Myers, Nancy B.
Sturmoski, Mark A.
McLellan, Michael D.
Miller, Christopher A.
Johanns, Tanner M.
Tan, Benjamin R.
Dunn, Gavin P.
Fleming, Timothy P.
Hansen, Ted H.
Goedegebuure, S. Peter
Gillanders, William E.
author_facet Li, Lijin
Zhang, Xiuli
Wang, Xiaoli
Kim, Samuel W.
Herndon, John M.
Becker-Hapak, Michelle K.
Carreno, Beatriz M.
Myers, Nancy B.
Sturmoski, Mark A.
McLellan, Michael D.
Miller, Christopher A.
Johanns, Tanner M.
Tan, Benjamin R.
Dunn, Gavin P.
Fleming, Timothy P.
Hansen, Ted H.
Goedegebuure, S. Peter
Gillanders, William E.
author_sort Li, Lijin
collection PubMed
description BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ub(mut)) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-00872-4.
format Online
Article
Text
id pubmed-8059244
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-80592442021-04-21 Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation Li, Lijin Zhang, Xiuli Wang, Xiaoli Kim, Samuel W. Herndon, John M. Becker-Hapak, Michelle K. Carreno, Beatriz M. Myers, Nancy B. Sturmoski, Mark A. McLellan, Michael D. Miller, Christopher A. Johanns, Tanner M. Tan, Benjamin R. Dunn, Gavin P. Fleming, Timothy P. Hansen, Ted H. Goedegebuure, S. Peter Gillanders, William E. Genome Med Research BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ub(mut)) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-00872-4. BioMed Central 2021-04-21 /pmc/articles/PMC8059244/ /pubmed/33879241 http://dx.doi.org/10.1186/s13073-021-00872-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Li, Lijin
Zhang, Xiuli
Wang, Xiaoli
Kim, Samuel W.
Herndon, John M.
Becker-Hapak, Michelle K.
Carreno, Beatriz M.
Myers, Nancy B.
Sturmoski, Mark A.
McLellan, Michael D.
Miller, Christopher A.
Johanns, Tanner M.
Tan, Benjamin R.
Dunn, Gavin P.
Fleming, Timothy P.
Hansen, Ted H.
Goedegebuure, S. Peter
Gillanders, William E.
Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title_full Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title_fullStr Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title_full_unstemmed Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title_short Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
title_sort optimized polyepitope neoantigen dna vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059244/
https://www.ncbi.nlm.nih.gov/pubmed/33879241
http://dx.doi.org/10.1186/s13073-021-00872-4
work_keys_str_mv AT lilijin optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT zhangxiuli optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT wangxiaoli optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT kimsamuelw optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT herndonjohnm optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT beckerhapakmichellek optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT carrenobeatrizm optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT myersnancyb optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT sturmoskimarka optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT mclellanmichaeld optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT millerchristophera optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT johannstannerm optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT tanbenjaminr optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT dunngavinp optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT flemingtimothyp optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT hansentedh optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT goedegebuurespeter optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation
AT gillanderswilliame optimizedpolyepitopeneoantigendnavaccineselicitneoantigenspecificimmuneresponsesinpreclinicalmodelsandinclinicaltranslation