Cargando…

Metamorphic proteins: the Janus proteins of structural biology

The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this pla...

Descripción completa

Detalles Bibliográficos
Autores principales: Madhurima, Kulkarni, Nandi, Bodhisatwa, Sekhar, Ashok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059507/
https://www.ncbi.nlm.nih.gov/pubmed/33878950
http://dx.doi.org/10.1098/rsob.210012
Descripción
Sumario:The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.