Cargando…

Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair

How adhesive forces are transduced and integrated into biochemical signals at focal adhesions (FAs) is poorly understood. Using cells adhering to deformable micropillar arrays, we demonstrate that traction force and FAK localization as well as traction force and Y397-FAK phosphorylation are linearly...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Dennis W., Fernández-Yagüe, Marc A., Holland, Elijah N., García, Andrés F., Castro, Nicolas S., O’Neill, Eric B., Eyckmans, Jeroen, Chen, Christopher S., Fu, Jianping, Schlaepfer, David D., García, Andrés J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060400/
https://www.ncbi.nlm.nih.gov/pubmed/33883558
http://dx.doi.org/10.1038/s41467-021-22602-5
_version_ 1783681353848455168
author Zhou, Dennis W.
Fernández-Yagüe, Marc A.
Holland, Elijah N.
García, Andrés F.
Castro, Nicolas S.
O’Neill, Eric B.
Eyckmans, Jeroen
Chen, Christopher S.
Fu, Jianping
Schlaepfer, David D.
García, Andrés J.
author_facet Zhou, Dennis W.
Fernández-Yagüe, Marc A.
Holland, Elijah N.
García, Andrés F.
Castro, Nicolas S.
O’Neill, Eric B.
Eyckmans, Jeroen
Chen, Christopher S.
Fu, Jianping
Schlaepfer, David D.
García, Andrés J.
author_sort Zhou, Dennis W.
collection PubMed
description How adhesive forces are transduced and integrated into biochemical signals at focal adhesions (FAs) is poorly understood. Using cells adhering to deformable micropillar arrays, we demonstrate that traction force and FAK localization as well as traction force and Y397-FAK phosphorylation are linearly coupled at individual FAs on stiff, but not soft, substrates. Similarly, FAK phosphorylation increases linearly with external forces applied to FAs using magnetic beads. This mechanosignaling coupling requires actomyosin contractility, talin-FAK binding, and full-length vinculin that binds talin and actin. Using an in vitro 3D biomimetic wound healing model, we show that force-FAK signaling coupling coordinates cell migration and tissue-scale forces to promote microtissue repair. A simple kinetic binding model of talin-FAK interactions under force can recapitulate the experimental observations. This study provides insights on how talin and vinculin convert forces into FAK signaling events regulating cell migration and tissue repair.
format Online
Article
Text
id pubmed-8060400
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80604002021-05-11 Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair Zhou, Dennis W. Fernández-Yagüe, Marc A. Holland, Elijah N. García, Andrés F. Castro, Nicolas S. O’Neill, Eric B. Eyckmans, Jeroen Chen, Christopher S. Fu, Jianping Schlaepfer, David D. García, Andrés J. Nat Commun Article How adhesive forces are transduced and integrated into biochemical signals at focal adhesions (FAs) is poorly understood. Using cells adhering to deformable micropillar arrays, we demonstrate that traction force and FAK localization as well as traction force and Y397-FAK phosphorylation are linearly coupled at individual FAs on stiff, but not soft, substrates. Similarly, FAK phosphorylation increases linearly with external forces applied to FAs using magnetic beads. This mechanosignaling coupling requires actomyosin contractility, talin-FAK binding, and full-length vinculin that binds talin and actin. Using an in vitro 3D biomimetic wound healing model, we show that force-FAK signaling coupling coordinates cell migration and tissue-scale forces to promote microtissue repair. A simple kinetic binding model of talin-FAK interactions under force can recapitulate the experimental observations. This study provides insights on how talin and vinculin convert forces into FAK signaling events regulating cell migration and tissue repair. Nature Publishing Group UK 2021-04-21 /pmc/articles/PMC8060400/ /pubmed/33883558 http://dx.doi.org/10.1038/s41467-021-22602-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhou, Dennis W.
Fernández-Yagüe, Marc A.
Holland, Elijah N.
García, Andrés F.
Castro, Nicolas S.
O’Neill, Eric B.
Eyckmans, Jeroen
Chen, Christopher S.
Fu, Jianping
Schlaepfer, David D.
García, Andrés J.
Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title_full Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title_fullStr Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title_full_unstemmed Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title_short Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
title_sort force-fak signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060400/
https://www.ncbi.nlm.nih.gov/pubmed/33883558
http://dx.doi.org/10.1038/s41467-021-22602-5
work_keys_str_mv AT zhoudennisw forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT fernandezyaguemarca forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT hollandelijahn forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT garciaandresf forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT castronicolass forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT oneillericb forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT eyckmansjeroen forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT chenchristophers forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT fujianping forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT schlaepferdavidd forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair
AT garciaandresj forcefaksignalingcouplingatindividualfocaladhesionscoordinatesmechanosensingandmicrotissuerepair