Cargando…
Non-linear Normalization for Non-UMI Single Cell RNA-Seq
Single cell RNA-seq data, like data from other sequencing technology, contain systematic technical noise. Such noise results from a combined effect of unequal efficiencies in the capturing and counting of mRNA molecules, such as extraction/amplification efficiency and sequencing depth. We show that...
Autores principales: | Wu, Zhijin, Su, Kenong, Wu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063035/ https://www.ncbi.nlm.nih.gov/pubmed/33897755 http://dx.doi.org/10.3389/fgene.2021.612670 |
Ejemplares similares
-
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
por: Lause, Jan, et al.
Publicado: (2021) -
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
por: You, Yue, et al.
Publicado: (2021) -
A machine learning framework for scRNA-seq UMI threshold optimization and accurate classification of cell types
por: Bishara, Isaac, et al.
Publicado: (2022) -
Compound models and Pearson residuals for normalization of single-cell RNA-seq data without UMIs
por: Lause, Jan, et al.
Publicado: (2023) -
UMIc: A Preprocessing Method for UMI Deduplication and Reads Correction
por: Tsagiopoulou, Maria, et al.
Publicado: (2021)