Cargando…
Regulation of translation by methylation multiplicity of 18S rRNA
SUMMARY: N(6)-methyladenosine (m(6)A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3′ end of 18S rRNA, thought to be constitutively di-methylated (m(6)(2)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063911/ https://www.ncbi.nlm.nih.gov/pubmed/33691096 http://dx.doi.org/10.1016/j.celrep.2021.108825 |
_version_ | 1783682034517934080 |
---|---|
author | Liu, Kuanqing Santos, Daniel A. Hussmann, Jeffrey A. Wang, Yun Sutter, Benjamin M. Weissman, Jonathan S. Tu, Benjamin P. |
author_facet | Liu, Kuanqing Santos, Daniel A. Hussmann, Jeffrey A. Wang, Yun Sutter, Benjamin M. Weissman, Jonathan S. Tu, Benjamin P. |
author_sort | Liu, Kuanqing |
collection | PubMed |
description | SUMMARY: N(6)-methyladenosine (m(6)A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3′ end of 18S rRNA, thought to be constitutively di-methylated (m(6)(2)A), are also mono-methylated (m(6)A). Although present at substoichiometric amounts, m(6)A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m(6)A-bearing ribosomes carry out translation distinctly from m(6)(2)A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation. IN BRIEF: Ribosome heterogeneity has become increasingly evident. Liu et al. report an example in the form of rRNA methylation. They show two conserved adenosines in the 18S rRNA are modified with varying numbers of methyl groups. Differentially methylated ribosomes translate differently, suggesting methylation multiplicity as a mechanism to regulate translation. |
format | Online Article Text |
id | pubmed-8063911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-80639112021-04-23 Regulation of translation by methylation multiplicity of 18S rRNA Liu, Kuanqing Santos, Daniel A. Hussmann, Jeffrey A. Wang, Yun Sutter, Benjamin M. Weissman, Jonathan S. Tu, Benjamin P. Cell Rep Article SUMMARY: N(6)-methyladenosine (m(6)A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3′ end of 18S rRNA, thought to be constitutively di-methylated (m(6)(2)A), are also mono-methylated (m(6)A). Although present at substoichiometric amounts, m(6)A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m(6)A-bearing ribosomes carry out translation distinctly from m(6)(2)A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation. IN BRIEF: Ribosome heterogeneity has become increasingly evident. Liu et al. report an example in the form of rRNA methylation. They show two conserved adenosines in the 18S rRNA are modified with varying numbers of methyl groups. Differentially methylated ribosomes translate differently, suggesting methylation multiplicity as a mechanism to regulate translation. 2021-03-09 /pmc/articles/PMC8063911/ /pubmed/33691096 http://dx.doi.org/10.1016/j.celrep.2021.108825 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Liu, Kuanqing Santos, Daniel A. Hussmann, Jeffrey A. Wang, Yun Sutter, Benjamin M. Weissman, Jonathan S. Tu, Benjamin P. Regulation of translation by methylation multiplicity of 18S rRNA |
title | Regulation of translation by methylation multiplicity of 18S rRNA |
title_full | Regulation of translation by methylation multiplicity of 18S rRNA |
title_fullStr | Regulation of translation by methylation multiplicity of 18S rRNA |
title_full_unstemmed | Regulation of translation by methylation multiplicity of 18S rRNA |
title_short | Regulation of translation by methylation multiplicity of 18S rRNA |
title_sort | regulation of translation by methylation multiplicity of 18s rrna |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063911/ https://www.ncbi.nlm.nih.gov/pubmed/33691096 http://dx.doi.org/10.1016/j.celrep.2021.108825 |
work_keys_str_mv | AT liukuanqing regulationoftranslationbymethylationmultiplicityof18srrna AT santosdaniela regulationoftranslationbymethylationmultiplicityof18srrna AT hussmannjeffreya regulationoftranslationbymethylationmultiplicityof18srrna AT wangyun regulationoftranslationbymethylationmultiplicityof18srrna AT sutterbenjaminm regulationoftranslationbymethylationmultiplicityof18srrna AT weissmanjonathans regulationoftranslationbymethylationmultiplicityof18srrna AT tubenjaminp regulationoftranslationbymethylationmultiplicityof18srrna |