Cargando…

Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain

The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Madsen, Jesper J., Olsen, Ole H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068379/
https://www.ncbi.nlm.nih.gov/pubmed/33917935
http://dx.doi.org/10.3390/biom11040549
_version_ 1783683022009139200
author Madsen, Jesper J.
Olsen, Ole H.
author_facet Madsen, Jesper J.
Olsen, Ole H.
author_sort Madsen, Jesper J.
collection PubMed
description The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics.
format Online
Article
Text
id pubmed-8068379
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80683792021-04-25 Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain Madsen, Jesper J. Olsen, Ole H. Biomolecules Article The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics. MDPI 2021-04-08 /pmc/articles/PMC8068379/ /pubmed/33917935 http://dx.doi.org/10.3390/biom11040549 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Madsen, Jesper J.
Olsen, Ole H.
Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title_full Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title_fullStr Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title_full_unstemmed Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title_short Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain
title_sort conformational plasticity-rigidity axis of the coagulation factor vii zymogen elucidated by atomistic simulations of the n-terminally truncated factor viia protease domain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068379/
https://www.ncbi.nlm.nih.gov/pubmed/33917935
http://dx.doi.org/10.3390/biom11040549
work_keys_str_mv AT madsenjesperj conformationalplasticityrigidityaxisofthecoagulationfactorviizymogenelucidatedbyatomisticsimulationsofthenterminallytruncatedfactorviiaproteasedomain
AT olsenoleh conformationalplasticityrigidityaxisofthecoagulationfactorviizymogenelucidatedbyatomisticsimulationsofthenterminallytruncatedfactorviiaproteasedomain