Cargando…
Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy
We sought to determine if Stephen Paget’s “seed and soil” hypothesis of organ-preference patterns of cancer metastasis can explain the development of heterogeneity in a tumor microenvironment (TME) as well as immunotherapeutic delivery and efficacy. We established single-cell-derived clones (clones...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069710/ https://www.ncbi.nlm.nih.gov/pubmed/33920216 http://dx.doi.org/10.3390/pharmaceutics13040530 |
_version_ | 1783683300971249664 |
---|---|
author | Liu, Yan Ting Goel, Shreya Kai, Megumi Moran Guerrero, Jose Alberto Nguyen, Thao Mai, Junhua Shen, Haifa Ziemys, Arturas Yokoi, Kenji |
author_facet | Liu, Yan Ting Goel, Shreya Kai, Megumi Moran Guerrero, Jose Alberto Nguyen, Thao Mai, Junhua Shen, Haifa Ziemys, Arturas Yokoi, Kenji |
author_sort | Liu, Yan Ting |
collection | PubMed |
description | We sought to determine if Stephen Paget’s “seed and soil” hypothesis of organ-preference patterns of cancer metastasis can explain the development of heterogeneity in a tumor microenvironment (TME) as well as immunotherapeutic delivery and efficacy. We established single-cell-derived clones (clones 1 and 16) from parental 4T1 murine breast cancer cells to create orthotopic primary and liver metastasis models to deconvolute polyclonal complexity cancer cells and the difference in TME-derived heterogeneities. Tumor-bearing mice were treated with anti-PD-L1 IgG or a control antibody, and immunofluorescent imaging and quantification were then performed to evaluate the therapeutic efficacy on tumor growth, the delivery of therapy to tumors, the development of blood vessels, the expression of PD-L1, the accumulation of immune cells, and the amount of coagulation inside tumors. The quantification showed an inverse correlation between the amount of delivered therapy and therapeutic efficacy in parental-cell-derived tumors. In contrast, tumors originating from clone 16 cells accumulated a significantly greater amount of therapy and responded better than clone-1-derived tumors. This difference was greater when tumors grew in the liver than the primary site. A similar trend was found in PD-L1 expression and immune cell accumulation. However, the change in the number of blood vessels was not significant. In addition, the amount of coagulation was more abundant in clone-1-derived tumors when compared to others. Thus, our findings reconfirmed the seed- and soil-dependent differences in PD-L1 expression, therapeutic delivery, immune cell accumulation, and tumor coagulation, which can constitute a heterogeneous delivery and response of immunotherapy in polyclonal tumors growing in different organs. |
format | Online Article Text |
id | pubmed-8069710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80697102021-04-26 Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy Liu, Yan Ting Goel, Shreya Kai, Megumi Moran Guerrero, Jose Alberto Nguyen, Thao Mai, Junhua Shen, Haifa Ziemys, Arturas Yokoi, Kenji Pharmaceutics Article We sought to determine if Stephen Paget’s “seed and soil” hypothesis of organ-preference patterns of cancer metastasis can explain the development of heterogeneity in a tumor microenvironment (TME) as well as immunotherapeutic delivery and efficacy. We established single-cell-derived clones (clones 1 and 16) from parental 4T1 murine breast cancer cells to create orthotopic primary and liver metastasis models to deconvolute polyclonal complexity cancer cells and the difference in TME-derived heterogeneities. Tumor-bearing mice were treated with anti-PD-L1 IgG or a control antibody, and immunofluorescent imaging and quantification were then performed to evaluate the therapeutic efficacy on tumor growth, the delivery of therapy to tumors, the development of blood vessels, the expression of PD-L1, the accumulation of immune cells, and the amount of coagulation inside tumors. The quantification showed an inverse correlation between the amount of delivered therapy and therapeutic efficacy in parental-cell-derived tumors. In contrast, tumors originating from clone 16 cells accumulated a significantly greater amount of therapy and responded better than clone-1-derived tumors. This difference was greater when tumors grew in the liver than the primary site. A similar trend was found in PD-L1 expression and immune cell accumulation. However, the change in the number of blood vessels was not significant. In addition, the amount of coagulation was more abundant in clone-1-derived tumors when compared to others. Thus, our findings reconfirmed the seed- and soil-dependent differences in PD-L1 expression, therapeutic delivery, immune cell accumulation, and tumor coagulation, which can constitute a heterogeneous delivery and response of immunotherapy in polyclonal tumors growing in different organs. MDPI 2021-04-10 /pmc/articles/PMC8069710/ /pubmed/33920216 http://dx.doi.org/10.3390/pharmaceutics13040530 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Yan Ting Goel, Shreya Kai, Megumi Moran Guerrero, Jose Alberto Nguyen, Thao Mai, Junhua Shen, Haifa Ziemys, Arturas Yokoi, Kenji Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title | Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title_full | Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title_fullStr | Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title_full_unstemmed | Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title_short | Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy |
title_sort | seed- and soil-dependent differences in murine breast tumor microenvironments dictate anti-pd-l1 igg delivery and therapeutic efficacy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069710/ https://www.ncbi.nlm.nih.gov/pubmed/33920216 http://dx.doi.org/10.3390/pharmaceutics13040530 |
work_keys_str_mv | AT liuyanting seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT goelshreya seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT kaimegumi seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT moranguerrerojosealberto seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT nguyenthao seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT maijunhua seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT shenhaifa seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT ziemysarturas seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy AT yokoikenji seedandsoildependentdifferencesinmurinebreasttumormicroenvironmentsdictateantipdl1iggdeliveryandtherapeuticefficacy |