Cargando…
Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication
Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (ca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070108/ https://www.ncbi.nlm.nih.gov/pubmed/33918068 http://dx.doi.org/10.3390/mi12040414 |
_version_ | 1783683393490255872 |
---|---|
author | Kluba, Marta Maria Li, Jian Parkkinen, Katja Louwerse, Marcus Snijder, Jaap Dekker, Ronald |
author_facet | Kluba, Marta Maria Li, Jian Parkkinen, Katja Louwerse, Marcus Snijder, Jaap Dekker, Ronald |
author_sort | Kluba, Marta Maria |
collection | PubMed |
description | Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process. |
format | Online Article Text |
id | pubmed-8070108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80701082021-04-26 Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication Kluba, Marta Maria Li, Jian Parkkinen, Katja Louwerse, Marcus Snijder, Jaap Dekker, Ronald Micromachines (Basel) Article Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process. MDPI 2021-04-08 /pmc/articles/PMC8070108/ /pubmed/33918068 http://dx.doi.org/10.3390/mi12040414 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kluba, Marta Maria Li, Jian Parkkinen, Katja Louwerse, Marcus Snijder, Jaap Dekker, Ronald Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title | Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title_full | Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title_fullStr | Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title_full_unstemmed | Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title_short | Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication |
title_sort | cavity-box soi: advanced silicon substrate with pre-patterned box for monolithic mems fabrication |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070108/ https://www.ncbi.nlm.nih.gov/pubmed/33918068 http://dx.doi.org/10.3390/mi12040414 |
work_keys_str_mv | AT klubamartamaria cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication AT lijian cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication AT parkkinenkatja cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication AT louwersemarcus cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication AT snijderjaap cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication AT dekkerronald cavityboxsoiadvancedsiliconsubstratewithprepatternedboxformonolithicmemsfabrication |