Cargando…

α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance

Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and prog...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez, Laura, Duchez, Pascale, Touya, Nicolas, Debeissat, Christelle, Guitart, Amélie V., Pasquet, Jean-Max, Vlaski-Lafarge, Marija, Brunet de la Grange, Philippe, Ivanovic, Zoran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070309/
https://www.ncbi.nlm.nih.gov/pubmed/33920203
http://dx.doi.org/10.3390/biom11040558
_version_ 1783683440267231232
author Rodriguez, Laura
Duchez, Pascale
Touya, Nicolas
Debeissat, Christelle
Guitart, Amélie V.
Pasquet, Jean-Max
Vlaski-Lafarge, Marija
Brunet de la Grange, Philippe
Ivanovic, Zoran
author_facet Rodriguez, Laura
Duchez, Pascale
Touya, Nicolas
Debeissat, Christelle
Guitart, Amélie V.
Pasquet, Jean-Max
Vlaski-Lafarge, Marija
Brunet de la Grange, Philippe
Ivanovic, Zoran
author_sort Rodriguez, Laura
collection PubMed
description Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and progenitor cells. In ex vivo experiments performed on cord blood CD34(+) cells, we found that αTOA effectively attenuates oxidative phosphorylation without affecting the glycolysis rate. This effect concerns complex I and complex II of the mitochondrial respiratory chain and is related to the relatively late increase (3 days) in ROS (Reactive Oxygen Species). The most interesting effect was the inhibition of Hypoxia-Inducible Factor (HIF)-2α (Hexpression, which is a determinant of the most pronounced biological effect—the accumulation of CD34(+) cells in the G0 phase of the cell cycle. In parallel, better maintenance of the primitive stem cell activity was revealed by the expansion seen in secondary cultures (higher production of colony forming cells (CFC) and Severe Combined Immunodeficiency-mice (scid)-repopulating cells (SRC)). While the presence of αTOA enhanced the maintenance of Hematopoietic Stem Cells (HSC) and contained their proliferation ex vivo, whether it could play the same role in vivo remained unknown. Creating αTOC deficiency via a vitamin E-free diet in mice, we found an accelerated proliferation of CFC and an expanded compartment of LSK (lineage(negative) Sca-1(+)cKit(+)) and SLAM (cells expressing Signaling Lymphocytic Activation Molecule family receptors) bone marrow cell populations whose in vivo repopulating capacity was decreased. These in vivo data are in favor of our hypothesis that αTOC may have a physiological role in the maintenance of stem cells. Taking into account that αTOC also exhibits an effect on proliferative capacity, it may also be relevant for the ex vivo manipulation of hematopoietic stem cells. For this purpose, low non-toxic doses of αTOA should be used.
format Online
Article
Text
id pubmed-8070309
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80703092021-04-26 α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance Rodriguez, Laura Duchez, Pascale Touya, Nicolas Debeissat, Christelle Guitart, Amélie V. Pasquet, Jean-Max Vlaski-Lafarge, Marija Brunet de la Grange, Philippe Ivanovic, Zoran Biomolecules Article Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and progenitor cells. In ex vivo experiments performed on cord blood CD34(+) cells, we found that αTOA effectively attenuates oxidative phosphorylation without affecting the glycolysis rate. This effect concerns complex I and complex II of the mitochondrial respiratory chain and is related to the relatively late increase (3 days) in ROS (Reactive Oxygen Species). The most interesting effect was the inhibition of Hypoxia-Inducible Factor (HIF)-2α (Hexpression, which is a determinant of the most pronounced biological effect—the accumulation of CD34(+) cells in the G0 phase of the cell cycle. In parallel, better maintenance of the primitive stem cell activity was revealed by the expansion seen in secondary cultures (higher production of colony forming cells (CFC) and Severe Combined Immunodeficiency-mice (scid)-repopulating cells (SRC)). While the presence of αTOA enhanced the maintenance of Hematopoietic Stem Cells (HSC) and contained their proliferation ex vivo, whether it could play the same role in vivo remained unknown. Creating αTOC deficiency via a vitamin E-free diet in mice, we found an accelerated proliferation of CFC and an expanded compartment of LSK (lineage(negative) Sca-1(+)cKit(+)) and SLAM (cells expressing Signaling Lymphocytic Activation Molecule family receptors) bone marrow cell populations whose in vivo repopulating capacity was decreased. These in vivo data are in favor of our hypothesis that αTOC may have a physiological role in the maintenance of stem cells. Taking into account that αTOC also exhibits an effect on proliferative capacity, it may also be relevant for the ex vivo manipulation of hematopoietic stem cells. For this purpose, low non-toxic doses of αTOA should be used. MDPI 2021-04-10 /pmc/articles/PMC8070309/ /pubmed/33920203 http://dx.doi.org/10.3390/biom11040558 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rodriguez, Laura
Duchez, Pascale
Touya, Nicolas
Debeissat, Christelle
Guitart, Amélie V.
Pasquet, Jean-Max
Vlaski-Lafarge, Marija
Brunet de la Grange, Philippe
Ivanovic, Zoran
α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title_full α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title_fullStr α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title_full_unstemmed α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title_short α-Tocopherol Attenuates Oxidative Phosphorylation of CD34(+) Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance
title_sort α-tocopherol attenuates oxidative phosphorylation of cd34(+) cells, enhances their g0 phase fraction and promotes hematopoietic stem and primitive progenitor cell maintenance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070309/
https://www.ncbi.nlm.nih.gov/pubmed/33920203
http://dx.doi.org/10.3390/biom11040558
work_keys_str_mv AT rodriguezlaura atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT duchezpascale atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT touyanicolas atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT debeissatchristelle atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT guitartameliev atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT pasquetjeanmax atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT vlaskilafargemarija atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT brunetdelagrangephilippe atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance
AT ivanoviczoran atocopherolattenuatesoxidativephosphorylationofcd34cellsenhancestheirg0phasefractionandpromoteshematopoieticstemandprimitiveprogenitorcellmaintenance