Cargando…

Assessment of Response to Moderate and High Dose Supplementation of Astaxanthin in Laying Hens

SIMPLE SUMMARY: With the increasing use of carotenoids, especially astaxanthin as a feed additive in the poultry industry, the concern about the health status of the laying hen and efficacy to improve egg quality in the case of overdosing was raised. Thus, we aimed to evaluate the effects of either...

Descripción completa

Detalles Bibliográficos
Autores principales: Dansou, Dieudonné M., Wang, Hao, Nugroho, Ramdhan D., He, Weizhao, Zhao, Qingyu, Zhang, Junmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071492/
https://www.ncbi.nlm.nih.gov/pubmed/33923372
http://dx.doi.org/10.3390/ani11041138
Descripción
Sumario:SIMPLE SUMMARY: With the increasing use of carotenoids, especially astaxanthin as a feed additive in the poultry industry, the concern about the health status of the laying hen and efficacy to improve egg quality in the case of overdosing was raised. Thus, we aimed to evaluate the effects of either moderate or high dose dietary supplementation of astaxanthin on eggs and laying hens’ health status. The results revealed that, at moderate dose increment, astaxanthin is well deposited in egg yolk, efficiently improves egg yolk color, and contributes to ameliorate the general health status of laying hens. Besides, the high dose supplementation presented positive effects on the coloration and enrichment of egg yolk and the health status of laying hens with no significant difference with the moderate doses to some extents. We concluded that it would be beneficial to add astaxanthin to laying hens feed at a moderate dose rather than high dose. ABSTRACT: In this study, we evaluated the impact of moderate and high dose dietary supplementation of astaxanthin on production performance, quality of eggs, and health status of laying hens. The experiment involved 480 laying hens, divided into four groups of eight replicates. The different groups named A1, A2, A3, and A4 were allocated the same diet supplemented with Haematococcus pluvialis powder to provide 0, 21.3, 42.6, and 213.4 mg of astaxanthin per kilogram of feed, respectively. One-way ANOVA and linear and quadratic regression analysis were used to assess the differences between the groups. The results showed that the production performance of laying hens and the physical quality of eggs did not significantly differ between the groups (p > 0.05). Astaxanthin distribution in tissues was typical per bird, whereas the egg yolk coloration and astaxanthin concentration increased with the supplementation dose (p < 0.001). However, there was a decrease in concentration and coloration efficacy of astaxanthin at high dose supplementation (213.4 mg/kg) compared to moderate doses (21.3 and 42.6 mg/kg). Blood biochemical tests showed some discrepancies that were not ascribed to the effect of diets, and the increase in liver weight in the A4 group compared to others was equated with an adaptation of laying hens to the high dose supplementation. Astaxanthin improved superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and diminished malondialdehyde (MDA) content in both liver and serum; meanwhile, the activities of SOD and GSH-Px in serum were similar between the moderate doses and high dose supplementation. Additionally, astaxanthin alleviated interleukin 2, 4, and 6 (IL-2, IL-4, and IL-6, respectively) in serum, showing the best effect in A3 and A4 groups. Besides, immunoglobulin G and M (IgG and IgM), as well as tumor necrosis factor-alpha and beta (TNF-α and TNF-β), were not much affected. It was concluded that although astaxanthin has no obvious adverse effect on the performance and health status of laying hens, it may not be valuable for egg fortification and health status improvement of laying hens at high dose supplementation. The high dose astaxanthin supplementation up to 213.4 mg/kg in the diet might be avoided.